Products of Riemann Integrable Functions

For these notes, let $M > 0$, $-\infty < a < b < \infty$ and $\alpha : [a, b] \to \mathbb{R}$ be nondecreasing. We shall prove

Theorem 1 Let $f : [a, b] \to [-M, M]$ be Riemann integrable with respect to α on $[a, b]$ and let $\varphi : [-M, M] \to \mathbb{R}$ be continuous. Then $\varphi \circ f$ (which is defined by $\varphi \circ f(x) = \varphi(f(x))$) is integrable with respect to α on $[a, b]$.

Corollary 2 Let $f, g : [a, b] \to \mathbb{R}$ be bounded functions which are Riemann integrable with respect to α on $[a, b]$. Then fg and $|f|$ and, for any positive integer n, f^n are integrable with respect to α on $[a, b]$.

Proof of Theorem 1: Let $\varepsilon > 0$.

The given data:

- φ is continuous on the compact set $[-M, M]$. So φ is uniformly continuous. So for any $\varepsilon' > 0$ (we shall choose one later) there is a $\delta > 0$ such that $|\varphi(x) - \varphi(y)| < \varepsilon'$ for all $x, y \in [-M, M]$ obeying $|x - y| < \delta$. Again, since φ is continuous on the compact set $[-M, M]$, it must be bounded on $[-M, M]$. So there is a constant M_φ such that $|\varphi(y)| \leq M_\varphi$ for all $|y| \leq M$.

- f is integrable. So, for any $\eta > 0$ (we shall choose one later), there is a partition $P_\eta = \{x_0, x_1, \ldots, x_n\}$ of $[a, b]$ such that

$$U(P_\eta, f, \alpha) - L(P_\eta, f, \alpha) = \sum_{i=1}^{n} (M_i - m_i) \Delta \alpha_i < \eta$$

(1)

where, as usual, $\Delta \alpha_i = \alpha(x_i) - \alpha(x_{i-1})$ and

$$M_i - m_i = \sup_{x_{i-1} \leq x \leq x_i} f(x) - \inf_{x_{i-1} \leq x \leq x_i} f(x) = \sup_{x_{i-1} \leq x, y \leq x_i} [f(x) - f(y)]$$

The goal:

It suffices for us to prove that

$$U(P_\eta, \varphi \circ f, \alpha) - L(P_\eta, \varphi \circ f, \alpha) = \sum_{i=1}^{n} (M_i^* - m_i^*) \Delta \alpha_i < \varepsilon$$

where

$$M_i^* - m_i^* = \sup_{x_{i-1} \leq x, y \leq x_i} [\varphi(f(x)) - \varphi(f(y))]$$

(1) If α is strictly increasing, then we know that integrability implies boundedness.
Set
\[A = \{ 1 \leq i \leq n \mid M_i - m_i < \delta \} \quad B = \{ 1 \leq i \leq n \mid M_i - m_i \geq \delta \} \]

Control of \(\sum_{i \in A} (M_i^* - m_i^*) \Delta \alpha_i \):

If \(i \in A \), then, for all \(x_{i-1} \leq x, y \leq x_i \)
\[f(x) - f(y) \leq M_i - m_i < \delta \implies \varphi(f(x)) - \varphi(f(y)) < \varepsilon' \]
\[\implies M_i^* - m_i^* \leq \varepsilon' \]

Hence
\[\sum_{i \in A} (M_i^* - m_i^*) \Delta \alpha_i \leq \sum_{i \in A} \varepsilon' \Delta \alpha_i \leq \varepsilon' \sum_{i=1}^n \Delta \alpha_i = \varepsilon'[\alpha(b) - \alpha(a)] \]

Control of \(\sum_{i \in B} (M_i^* - m_i^*) \Delta \alpha_i \):

If \(i \in B \), we cannot conclude that \(M_i^* - m_i^* \) is small. About the best we can do is
\[x_{i-1} \leq x, y \leq x_i \implies \varphi(f(x)) - \varphi(f(y)) \leq 2M_{\varphi} \implies M_i^* - m_i^* \leq 2M_{\varphi} \]

On the other hand, we can show that \(\sum_{i \in B} \Delta \alpha_i \) must be very small, because, by (1),
\[\eta > \sum_{i=1}^n (M_i - m_i) \Delta \alpha_i \geq \sum_{i \in B} (M_i - m_i) \Delta \alpha_i \geq \sum_{i \in B} \delta \Delta \alpha_i \implies \sum_{i \in B} \Delta \alpha_i < \frac{n}{\delta} \]

Hence
\[\sum_{i \in B} (M_i^* - m_i^*) \Delta \alpha_i \leq \sum_{i \in B} 2M_{\varphi} \Delta \alpha_i < 2M_{\varphi} \frac{n}{\delta} \]

The end game:
\[
U(P_\eta, \varphi \circ f, \alpha) - L(P_\eta, \varphi \circ f, \alpha) = \sum_{i \in A} (M_i^* - m_i^*) \Delta \alpha_i + \sum_{i \in B} (M_i^* - m_i^*) \Delta \alpha_i \\
< \varepsilon'[\alpha(b) - \alpha(a)] + 2M_{\varphi} \frac{n}{\delta}
\]

It now suffices to choose
\[\varepsilon' = \frac{\varepsilon}{2[\alpha(b) - \alpha(a)]} \quad \eta = \frac{\varepsilon \delta}{4M_{\varphi}} \]

Proof of Corollary 2: The integrability of \(|f|\) and \(f^n\) both follow directly from Theorem 1, with \(\varphi(y) = |y| \) and \(\varphi(y) = y^n \), respectively. If \(f \) and \(g \) are bounded and integrable, then so is \(f + g \). Hence, by Theorem 1, with \(\varphi(y) = y^2 \), we have that \(f^2, g^2 \) and \((f + g)^2 = f^2 + g^2 + 2fg \) are all integrable. The integrability of \(fg = \frac{1}{2}((f + g)^2 - f^2 - g^2) \) now follows by linearity.

\[\copyright \ Joel Feldman. 2016. All rights reserved. December 25, 2016 Products of Riemann Integrable Functions 2 \]