Math 321 Problem Set 4
Due Wednesday, February 8

1. Let \(a < b \). Prove that if \(f : [a, b] \to \mathbb{R} \) and \(g : [a, b] \to \mathbb{R} \) are both of bounded variation then their product \(fg \) is also of bounded variation.

2. (a) Show that a polynomial \(P(x) \) is of finite variation on every finite interval.
 (b) Develop a formula for the total variation of the polynomial \(P(x) \) on the finite interval \([a, b]\) if the zeroes of the derivative \(P'(x) \) are known. (Denote the zeroes \(a \leq r_1 < \cdots < r_n \leq b \).) The formula should only involve the numbers \(P(x) \) for various \(x \)'s.

3. Let \(f, \alpha : [a, b] \to \mathbb{R} \) with \(\alpha \) increasing and \(f \in \mathbb{R}(\alpha) \) on \([a, b] \). Set \(g(x) = \int_a^x f(t) \, d\alpha(t) \).
 Prove that \(g \) is of bounded variation with \(V_g(x) = \int_a^x |f(t)| \, d\alpha(t) \).
 Hint: Prove that, for any partition \(\mathcal{P} = \{ x_0, x_1, \ldots, x_n \} \) of \([a, b] \),
 \[
 \int_{x_{i-1}}^{x_i} |f(t)| \, d\alpha(t) - \int_{x_{i-1}}^{x_{i-1}} f(t) \, d\alpha(t) \leq (M_i - m_i)(\alpha(x_i) - \alpha(x_{i-1}))
 \]
 where, as usual,
 \[
 M_i = \sup_{t \in [x_{i-1}, x_i]} f(t) \quad \text{and} \quad m_i = \inf_{t \in [x_{i-1}, x_i]} f(t)
 \]

4. Consider the power series \(\sum_{n=0}^{\infty} x^n \).
 (a) Fix an arbitrary \(0 < \varepsilon < \frac{1}{2} \) and \(x \in (-1, 1) \). Find explicitly a number \(N_{\varepsilon, x} \) such that
 \[
 \left| \sum_{n=0}^{m} x^n - \frac{1}{1-x} \right| \leq \varepsilon \iff m \geq N_{\varepsilon, x}
 \]
 Sketch a graph of \(N_{\varepsilon, x} \) as a function of \(x \) for fixed \(\varepsilon \).
 (b) Prove that \(\sum_{n=0}^{\infty} x^n \) converges uniformly on \([-a, a]\) for any fixed \(0 \leq a < 1 \).
 (c) Prove that \(\sum_{n=0}^{\infty} x^n \) does not converge uniformly on \((-1, 1)\).

5. Let \(\{f_n\} \) and \(\{g_n\} \) be uniformly convergent sequences of real–valued functions on some set \(E \).
 (a) Prove that \(\{f_n + g_n\} \) converges uniformly on \(E \).
 (b) Prove that if \(\{f_n\} \) and \(\{g_n\} \) are bounded, then \(\{f_n g_n\} \) converges uniformly on \(E \).
 (c) Construct sequences \(\{f_n\} \) and \(\{g_n\} \) such that \(\{f_n\} \) and \(\{g_n\} \) converge uniformly, \(\{f_n g_n\} \) converges pointwise, but \(\{f_n g_n\} \) does not converge uniformly.