1. Define \(\alpha, f : [0, 2] \to \mathbb{R} \) by

\[
\alpha(x) = f(x) = \begin{cases}
0 & \text{if } 0 \leq x < 1 \\
1 & \text{if } 1 \leq x \leq 2
\end{cases}
\]

Prove that \(f \notin \mathcal{R}(\alpha) \) on \([0, 2]\).

2. (The Cauchy Criterion) Let \(\alpha, f : [a, b] \to \mathbb{R} \). Prove that \(f \) is integrable with respect to \(\alpha \) on \([a, b]\) (i.e. \(f \in \mathcal{R}(\alpha) \) on \([a, b]\)) if and only if for every \(\varepsilon > 0 \) there is a partition \(\mathcal{P}_\varepsilon \) of \([a, b]\) such that

\[
|S(\mathcal{P}_1, T_1, f, \alpha) - S(\mathcal{P}_2, T_2, f, \alpha)| < \varepsilon
\]

for all partitions \(\mathcal{P}_1, \mathcal{P}_2 \supset \mathcal{P}_\varepsilon \) and all choices \(T_1, T_2 \) for \(\mathcal{P}_1, \mathcal{P}_2 \), respectively.

3. Let \(a < c < b \). Let \(f, \alpha : [a, b] \to \mathbb{R} \). Prove that if \(f \in \mathcal{R}(\alpha) \) on \([a, b]\), then \(f \in \mathcal{R}(\alpha) \) on \([a, c]\).

4. (Improper integrals on \([0, 1]\)) Suppose that \(f : (0, 1] \to \mathbb{R} \) and that \(f \in \mathcal{R} \) on \([c, 1]\) for all \(0 < c < 1 \). Define the improper integral \(\int_0^1 f(x) \, dx = \lim_{c \to 0^+} \int_c^1 f(x) \, dx \) if the limit exists (and is finite).

(a) Show that if \(f \in \mathcal{R} \) on \([0, 1]\), then the improper integral \(\lim_{c \to 0^+} \int_c^1 f(x) \, dx \) exists and equals the Riemann integral \(\int_0^1 f(x) \, dx \).

(b) Show that \(\int_0^1 \frac{1}{\sqrt{x}} \, dx \) exists as an improper integral but that \(\frac{1}{\sqrt{x}} \notin \mathcal{R} \) on \([0, 1]\).

(c) Parts (a) and (b) dealt with two different definitions of “integral” – the Riemann integral and the improper integral. The goal of both of these definitions is to give a precise meaning to “the area under a curve”. Why was the improper integral definition more successful than the Riemann integral definition in part (b)?

5. (Axiomatic definition of the integral) Let \(a < b \). Suppose that to every continuous function \(f : [a, b] \to \mathbb{R} \) and every subinterval \([\alpha, \beta] \subset [a, b] \) there is associated a number \(I_\alpha^\beta(f) \) satisfying

(a) \(I_\alpha^\beta(sf + tg) = sI_\alpha^\beta(f) + tI_\alpha^\beta(g) \) for all \(s, t \in \mathbb{R} \)

(b) \(I_\alpha^\beta(1) = \beta - \alpha \)

(c) \(I_\alpha^\beta(f) = I_\alpha^\gamma(f) + I_\gamma^\beta(f) \) for all \(\gamma \in [\alpha, \beta] \)

(d) \(|I_\alpha^\beta(f)| \leq (\beta - \alpha) \sup_{x \in [\alpha, \beta]} |f(x)| \)

Prove that \(I_\alpha^\beta(f) = \int_\alpha^\beta f(x) \, dx \). Hint: Prove that \(\frac{d}{d\beta} \left\{ I_\alpha^\beta(f) - \int_\alpha^\beta f(x) \, dx \right\} = 0 \).

see over
6. (The Dirac Delta Function) There is a well-known “function”, the Dirac Delta function, that is very useful in the physical sciences (c.f. “point” mass, “impulse” force, spectral “line”, etc). It is “defined”, on a hand waving level, by the properties that

(i) \(\delta(x) = 0 \) except when \(x = 0 \)

(ii) \(\delta(0) \) is “so infinite” that

(iii) the area under its graph is one.

Here is a “derivation” of the the most important property of the Dirac Delta function. Let \(f \) be any continuous function. The functions \(f(x)\delta(x) \) and \(f(0)\delta(x) \) are the same since they are both zero for every \(x \neq 0 \). Consequently \(\int_{-1}^{1} f(x)\delta(x) \, dx = \int_{-1}^{1} f(0)\delta(x) \, dx = f(0) \int_{-1}^{1} \delta(x) \, dx = f(0) \).

(a) Prove that there does not exist a function \(\delta(x) \) obeying

(i) \(f(x)\delta(x) \in \mathcal{R}(x) \) on \([-1, 1]\)

(ii) \(\int_{-1}^{1} f(x)\delta(x) \, dx = f(0) \)

whenever \(f \) is continuous on \([-1, 1]\).

(b) Define the Heavyside unit function \(H(x) = \begin{cases} 1 & \text{if } x \geq 0 \\ 0 & \text{if } x < 0 \end{cases} \). Prove that if the function \(f : [-1, 1] \to \mathbb{R} \) is continuous, then \(f \in \mathcal{R}(H) \) on \([-1, 1]\) and \(\int_{-1}^{1} f \, dH = f(0) \).

Remark. On a hand waving level, \(\int_{-1}^{1} f \, dH = \int_{-1}^{1} f \frac{dH}{dx} \, dx \), so “\(\delta(x) = \frac{dH}{dx} \)”.

Hence (b) has provided a rigorous procedure both for defining the delta “function” and for making sense of the often used equation \(\delta(x) = \frac{dH}{dx} \). There are other procedures for doing so, that we could use as our optional topic at the end of this course.