Alternate Proof of Integrability

Theorem. Let \(\alpha : [a, b] \to \mathbb{R} \) be monotone and \(f : [a, b] \to \mathbb{R} \) be continuous. Then \(f \in \mathcal{R}(\alpha) \) on \([a, b] \). That is, the integral \(\int_{a}^{b} f \, d\alpha \) exists.

Proof: We use the Cauchy criterion, which says

"Your verified this criterion in Problem Set 2, #1. So we let \(\varepsilon > 0 \) such that suppose that for every \(1 \leq m \leq n \) for every \(\varepsilon > 0 \) for every \(\alpha \in [a, b] \) such that for every \(\varepsilon > 0 \) for every \(\alpha \in [a, b] \) such that \(|S(P_1, T_1, f, \alpha) - S(P_2, T_2, f, \alpha)| < \varepsilon \)

for all partitions \(P_1, P_2 \supset P_\varepsilon \) and all choices \(T_1, T_2 \) for \(P_1, P_2 \), respectively.

Your verified this criterion in Problem Set 2, #1. So we let \(\varepsilon > 0 \) and must find a partition \(P_\varepsilon \) of \([a, b] \) such that \(|S(P, T, f, \alpha) - S(P', T', f, \alpha)| \leq \varepsilon \) for all partitions \(P \supset P_\varepsilon \) and \(P' \supset P_\varepsilon \) and all choices \(T, T' \) for \(P, P' \), respectively. Since \(f \) is continuous on the compact set \([a, b] \), it is uniformly continuous. So there is a \(\delta > 0 \) such that \(|f(t) - f(s)| \leq \frac{\varepsilon}{2|\alpha(b) - \alpha(a)|} \) for all \(s, t \in [a, b] \) with \(|s - t| < \delta \). We choose for \(P_\varepsilon \) any partition of \([a, b] \) with \(|P_\varepsilon| \leq \delta \).

Let \(P \supset P_\varepsilon \) and \(P' \supset P_\varepsilon \) be partitions of \([a, b] \) and \(T \) and \(T' \) be choices for \(P \) and \(P' \), respectively. Set \(Q = P \cup P' \) and let \(S \) be any choice for \(Q \). It suffices to prove that \(|S(P, T, f, \alpha) - S(Q, S, f, \alpha)| \leq \frac{\varepsilon}{2} \) and \(|S(P', T', f, \alpha) - S(Q, S, f, \alpha)| \leq \frac{\varepsilon}{2} \). We'll prove the first inequality. To prove the second, just add primes. Suppose that \(P = \{x_0, x_1, \ldots, x_n\} \). Concentrate on the contributions to \(S(P, T, f, \alpha) \) and \(S(Q, S, f, \alpha) \) from \([x_{i-1}, x_i] \), for some \(1 \leq i \leq n \). For \(S(P, T, f, \alpha) \), the contribution is

\[
C_{P,i} = f(t_i) [\alpha(x_i) - \alpha(x_{i-1})]
\]

If \(Q \cap [x_{i-1}, x_i] = \{x_{i-1}, y_1, \ldots, y_{m-1}, x_i\} \), the corresponding contribution for \(S(Q, S, f, \alpha) \) is

\[
C_{Q,i} = \sum_{j=1}^{m} f(s_j) [\alpha(y_j) - \alpha(y_{j-1})]
\]

where, for notational convenience, we have set \(y_0 = x_{i-1} \) and \(y_m = x_i \). The difference between these two contributions is

\[
C_{P,i} - C_{Q,i} = f(t_i) [\alpha(x_i) - \alpha(x_{i-1})] - \sum_{j=1}^{m} f(s_j) [\alpha(y_j) - \alpha(y_{j-1})]
\]

\[
= \sum_{j=1}^{m} f(t_i) [\alpha(y_j) - \alpha(y_{j-1})] - \sum_{j=1}^{m} f(s_j) [\alpha(y_j) - \alpha(y_{j-1})]
\]

\[
= \sum_{j=1}^{m} [f(t_i) - f(s_j)] [\alpha(y_j) - \alpha(y_{j-1})]
\]

Since \(t_i, s_j, \ldots, s_m \in [x_{i-1}, x_i] \) and \(|x_i - x_{i-1}| \leq \delta \), we have \(|s_j - t_i| \leq \delta \) and hence \(|f(t_i) - f(s_j)| \leq \frac{\varepsilon}{2|\alpha(b) - \alpha(a)|} \) for every \(1 \leq j \leq m \). Hence

\[
|C_{P,i} - C_{Q,i}| \leq \sum_{j=1}^{m} \frac{\varepsilon}{2|\alpha(b) - \alpha(a)|} |\alpha(y_j) - \alpha(y_{j-1})|
\]
Since α is monotonic, the sign of $\alpha(y_j) - \alpha(y_{j-1})$ is independent of j so that $\sum_{j=1}^{m} |\alpha(y_j) - \alpha(y_{j-1})| = |\alpha(x_i) - \alpha(x_{i-1})|$ and $|C_{P,i} - C_{Q,i}| \leq \frac{\varepsilon}{2|\alpha(b) - \alpha(a)|} |\alpha(x_i) - \alpha(x_{i-1})|$. Adding up the contributions from $[x_{i-1}, x_i]$ for $1 \leq i \leq n$,

$$|S(P, T, f, \alpha) - S(Q, S, f, \alpha)| \leq \sum_{i=1}^{n} |C_{P,i} - C_{Q,i}| \leq \sum_{i=1}^{n} \frac{\varepsilon}{2|\alpha(b) - \alpha(a)|} |\alpha(x_i) - \alpha(x_{i-1})|$$

$$= \frac{\varepsilon}{2|\alpha(b) - \alpha(a)|} |\alpha(b) - \alpha(a)| = \frac{\varepsilon}{2}$$

as desired.