The Contraction Mapping Theorem and the Implicit Function Theorem

Theorem (The Contraction Mapping Theorem) Let $B_a = \{ \vec{x} \in \mathbb{R}^d \mid \|\vec{x}\| < a \}$ denote the open ball of radius a centred on the origin in \mathbb{R}^d. If the function

$$
\vec{g} : B_a \to \mathbb{R}^d
$$

obeys

(H1) there is a constant $G < 1$ such that $\|\vec{g}(\vec{x}) - \vec{g}(\vec{y})\| \leq G \|\vec{x} - \vec{y}\|$ for all $\vec{x}, \vec{y} \in B_a$

(H2) $\|\vec{g}(\vec{0})\| < (1 - G)a$

then the equation

$$
\vec{x} = \vec{g}(\vec{x})
$$

has exactly one solution.

Discussion of hypothesis (H1): Hypothesis (H1) is responsible for the word “Contraction” in the name of the theorem. Because $G < 1$ (and it is crucial that $G < 1$) the distance between the images $\vec{g}(\vec{x})$ and $\vec{g}(\vec{y})$ of \vec{x} and \vec{y} is smaller than the original distance between \vec{x} and \vec{y}. Thus the function \vec{g} contracts distances. Note that, when the dimension $d = 1$, $|g(x) - g(y)| = \left| \int_x^y g'(t) \, dt \right| = \left| \int_x^y |g'(t)| \, dt \right| = \left| \int_x^y \sup_{t' \in B_a} |g'(t')| \, dt \right| = |x - y| \sup_{t' \in B_a} |g'(t')|$

For a once continuously differentiable function, the smallest G that one can pick and still have $|g(x) - g(y)| \leq G|x - y|$ for all x, y is $G = \sup_{t' \in B_a} |g'(t')|$. In this case (H1) comes down to the requirement that there exist a constant $G < 1$ such that $|g'(t)| \leq G < 1$ for all $t' \in B_a$. For dimensions $d > 1$, one has a whole matrix $G(\vec{x}) = [\frac{\partial g_i}{\partial x_j}(\vec{x})]_{1 \leq i, j \leq d}$ of first partial derivatives. There is a measure of the size of this matrix, called the norm of the matrix and denoted $\|G(\vec{x})\|$ such that

$$
\|\vec{g}(\vec{x}) - \vec{g}(\vec{y})\| \leq \|\vec{x} - \vec{y}\| \sup_{\vec{t} \in B_a} \|G(\vec{t})\|
$$

Once again (H1) comes down to $\|G(\vec{t})\| \leq G < 1$ for all $\vec{t} \in B_a$. Roughly speaking, (H1) forces the derivative of \vec{g} to be sufficiently small, which forces the derivative of $\vec{x} - \vec{g}(\vec{x})$ to be bounded away from zero.
If we were to relax (H1) to $G \leq 1$, the theorem would fail. For example, $g(x) = x$ obeys $|g(x) - g(y)| = |x - y|$ for all x and y. So G would be one in this case. But every x obeys $g(x) = x$, so the solution is certainly not unique.

Discussion of hypothesis (H2): If \tilde{g} only takes values that are outside of B_a, then $\tilde{x} = \tilde{g}(\tilde{x})$ cannot possibly have any solutions. So there has to be a requirement that $\tilde{g}(\tilde{x})$ lies in B_a for at least some values of $\tilde{x} \in B_a$. Our hypotheses are actually somewhat stronger than this:

$$\|\tilde{g}(\tilde{x})\| = \|\tilde{g}(\tilde{x}) - \tilde{g}(0) + \tilde{g}(0)\| \leq \|\tilde{g}(\tilde{x}) - \tilde{g}(0)\| + \|\tilde{g}(0)\| \leq G\|\tilde{x} - 0\| + (1-G)a$$

by (H1) and (H2). So, for all \tilde{x} in B_a, that is, all \tilde{x} with $\|\tilde{x}\| < a$, $\|\tilde{g}(\tilde{x})\| < Ga + (1-G)a = a$. With our hypotheses $\tilde{g} : B_a \rightarrow B_a$. Roughly speaking, (H2) requires that $\tilde{g}(\tilde{x})$ be sufficiently small for at least one \tilde{x}.

If we were to relax (H2) to $\|\tilde{g}(0)\| \leq (1-G)a$, the theorem would fail. For example, let $d = 1$, pick any $a > 0$, $0 < G < 1$ and define $g : B_a \rightarrow \mathbb{R}$ by $g(x) = a(1-G) + Gx$. Then $g'(x) = G$ for all x and $g(0) = a(1-G)$. For this g,

$$g(x) = x \iff a(1-G) + Gx = x \iff a(1-G) = (1-G)x \iff x = a$$

As $x = a$ is not in the domain of definition of g, there is no solution.

Proof that there is at most one solution: Suppose that \bar{x}^* and \tilde{y}^* are two solutions. Then

$$\bar{x}^* = \tilde{g}(\bar{x}^*), \quad \tilde{y}^* = \tilde{g}(\tilde{y}^*) \quad \implies \quad \|\bar{x}^* - \tilde{y}^*\| = \|\tilde{g}(\bar{x}^*) - \tilde{g}(\tilde{y}^*)\|$$

$$\tag{H1} \implies \|\bar{x}^* - \tilde{y}^*\| \leq G\|\bar{x}^* - \tilde{y}^*\|$$

$$\implies \quad (1-G)\|\bar{x}^* - \tilde{y}^*\| = 0$$

As $G < 1$, $1-G$ is nonzero and $\|\bar{x}^* - \tilde{y}^*\|$ must be zero. That is, \bar{x}^* and \tilde{y}^* must be the same.

Proof that there is at least one solution: Set

$$\bar{x}_0 = 0 \quad \bar{x}_1 = \tilde{g}(\bar{x}_0) \quad \bar{x}_2 = \tilde{g}(\bar{x}_1) \quad \cdots \quad \bar{x}_n = \tilde{g}(\bar{x}_{n-1}) \quad \cdots$$

We showed in “Significance of hypothesis (H2)” that $\tilde{g}(\bar{x})$ is in B_a for all \bar{x} in B_a. So \bar{x}_0, \bar{x}_1, \bar{x}_2, \cdots are all in B_a. So the definition $\bar{x}_n = \tilde{g}(\bar{x}_{n-1})$ is legitimate. We shall show that the sequence \bar{x}_0, \bar{x}_1, \bar{x}_2, \cdots converges to some vector \bar{x}^*. Since \tilde{g} is continuous, this vector will obey

$$\bar{x}^* = \lim_{n \to \infty} \bar{x}_n = \lim_{n \to \infty} \tilde{g}(\bar{x}_{n-1}) = \tilde{g}(\lim_{n \to \infty} \bar{x}_{n-1}) = \tilde{g}(\bar{x}^*)$$
In other words, \(\tilde{x}^n \) is a solution of \(\tilde{x} = \tilde{g}(\tilde{x}) \).

To prove that the sequence converges, we first observe that, applying (H1) numerous times,
\[
\|\tilde{x}_m - \tilde{x}_{m-1}\| = \|\tilde{g}(\tilde{x}_{m-1}) - \tilde{g}(\tilde{x}_{m-2})\| \\
\leq G\|\tilde{x}_{m-1} - \tilde{x}_{m-2}\| = G\|\tilde{g}(\tilde{x}_{m-2}) - \tilde{g}(\tilde{x}_{m-3})\| \\
\leq G^2\|\tilde{x}_{m-2} - \tilde{x}_{m-3}\| = G^2\|\tilde{g}(\tilde{x}_{m-3}) - \tilde{g}(\tilde{x}_{m-4})\| \\
\vdots \\
\leq G^{m-1}\|\tilde{x}_1 - \tilde{x}_0\| = G^{m-1}\|\tilde{g}(\tilde{0})\|
\]

Remember that \(G < 1 \). So the distance \(\|\tilde{x}_m - \tilde{x}_{m-1}\| \) between the \((m-1)\)st and \(m\)th entries in the sequence gets really small for \(m\) large. As
\[
\tilde{x}_n = \tilde{x}_0 + (\tilde{x}_1 - \tilde{x}_0) + (\tilde{x}_2 - \tilde{x}_1) + \cdots + (\tilde{x}_n - \tilde{x}_{n-1}) = \sum_{m=1}^{n} (\tilde{x}_m - \tilde{x}_{m-1})
\]
(recall that \(\tilde{x}_0 = \tilde{0} \)) it suffices to prove that \(\sum_{m=1}^{n} (\tilde{x}_m - \tilde{x}_{m-1}) \) converges as \(n \to \infty\). To do so it suffices to prove that \(\sum_{m=1}^{n} \|\tilde{x}_m - \tilde{x}_{m-1}\| \) converges as \(n \to \infty\), which we do now.

\[
\sum_{m=1}^{n} \|\tilde{x}_m - \tilde{x}_{m-1}\| \leq \sum_{m=1}^{n} G^{m-1}\|\tilde{g}(\tilde{0})\| = \frac{1 - G^n}{1 - G}\|\tilde{g}(\tilde{0})\|
\]

As \(n\) tends to \(\infty\), \(G^n\) converges to zero (because \(0 \leq G < 1\)) and \(\frac{1 - G^n}{1 - G}\|\tilde{g}(\tilde{0})\|\) converges to \(\frac{1}{1 - G}\|\tilde{g}(\tilde{0})\|\).

Generalization: The same argument proves the following generalization:

Let \(X\) be a complete metric space, with metric \(d\), and \(g : X \to X\). If there is a constant \(0 \leq G < 1\) such that
\[
d(g(x), g(y)) \leq G d(x, y) \quad \text{for all } x, y \in X
\]

then there exists a unique \(x \in X\) obeying \(g(x) = x\).

The Implicit Function Theorem: As an application of the contraction mapping theorem, we now prove the implicit function theorem. Consider some function \(f(\tilde{x}, \tilde{y})\) with \(\tilde{x}\) running over \(\mathbb{R}^n\), \(\tilde{y}\) running over \(\mathbb{R}^d\) and \(f\) taking values in \(\mathbb{R}^d\). Suppose that we have one point \((\tilde{x}_0, \tilde{y}_0)\) on the surface \(f(\tilde{x}, \tilde{y}) = 0\). In other words, suppose that \(f(\tilde{x}_0, \tilde{y}_0) = 0\). And suppose that we wish to solve \(f(\tilde{x}, \tilde{y}) = 0\) for \(\tilde{y}\) as a function of \(\tilde{x}\) near \((\tilde{x}_0, \tilde{y}_0)\). First
observe that for each fixed \bar{x}, $\bar{f}(\bar{x}, \bar{y}) = 0$ is a system of d equations in d unknowns. So at least the number of unknowns matches the number of equations. Denote by A the $d \times d$ matrix $\left[\frac{\partial f_i}{\partial y_j} (\bar{x}_0, \bar{y}_0) \right]_{1 \leq i, j \leq d}$ of first partial \bar{y} derivatives at (\bar{x}_0, \bar{y}_0). Assume that this matrix exists and has an inverse. When $d = 1$, A is invertible if and only if $\frac{\partial f}{\partial y}(x_0, \bar{y}_0) \neq 0$. For $d > 1$, A is invertible if and only if 0 is not an eigenvalue of A. Also, A is invertible if and only if $\det A \neq 0$. In any event, assuming that A^{-1} exists

$$\bar{f}(\bar{x}, \bar{y}) = 0 \iff A^{-1} \bar{f}(\bar{x}, \bar{y}) = 0 \iff \bar{y} - \bar{y}_0 - A^{-1} \bar{f}(\bar{x}, \bar{y}) = \bar{y} - \bar{y}_0$$

Rename $\bar{y} - \bar{y}_0 = \bar{z}$ and define $\bar{g}(\bar{x}, \bar{z}) = \bar{z} - A^{-1} \bar{f}(\bar{x}, \bar{z} + \bar{y}_0)$. Then

$$\bar{f}(\bar{x}, \bar{y}) = 0 \iff \bar{y} = \bar{y}_0 + \bar{z} \text{ and } \bar{g}(\bar{x}, \bar{z}) = \bar{z}$$

Now apply the Contraction Mapping Theorem with \bar{x} viewed as a fixed parameter and \bar{z} viewed as the variable. That is, fix any \bar{x} sufficiently near \bar{x}_0. Then $\bar{g}(\bar{x}, \bar{z})$ is a function of \bar{z} only and one may apply the Contraction Mapping Theorem to it.

We must of course check that the hypotheses are satisfied. Observe first, that when $\bar{z} = 0$ and $\bar{x} = \bar{x}_0$, the matrix $\left[\frac{\partial g_i}{\partial z_j} (\bar{x}_0, \bar{0}) \right]_{1 \leq i, j \leq d}$ of first derivatives of \bar{g} is exactly $I - A^{-1} A$, where I is the identity matrix. The identity I arises from differentiating the term \bar{z} in $\bar{g}(\bar{x}_0, \bar{z}) = \bar{z} - A^{-1} \bar{f}(\bar{x}_0, \bar{z} + \bar{y}_0)$ and $- A^{-1} A$ arises from differentiating $- A^{-1} \bar{f}(\bar{x}_0, \bar{z} + \bar{y}_0)$. So $\left[\frac{\partial g_i}{\partial z_j} (\bar{x}_0, \bar{0}) \right]_{1 \leq i, j \leq d}$ is exactly the zero matrix. For (\bar{x}, \bar{z}) sufficiently close to $(\bar{x}_0, \bar{0})$, the matrix $\left[\frac{\partial g_i}{\partial z_j} (\bar{x}, \bar{z}) \right]_{1 \leq i, j \leq d}$ will, by continuity, be small enough that (H1) is satisfied. This is because, for any $\bar{u}, \bar{v} \in \mathbb{R}^d$, and any $1 \leq i \leq d$,

$$g_i(\bar{x}, \bar{u}) - g_i(\bar{x}, \bar{v}) = \int_0^1 \frac{d}{dt} g_i(\bar{x}, t\bar{u} + (1-t)\bar{v}) \, dt = \sum_{j=1}^d \int_0^1 (u_j - v_j) \frac{\partial g_i}{\partial z_j}(\bar{x}, t\bar{u} + (1-t)\bar{v}) \, dt$$

so that

$$|g_i(\bar{x}, \bar{u}) - g_i(\bar{x}, \bar{v})| \leq d \|\bar{u} - \bar{v}\| \max_{0 \leq t \leq 1} \left| \frac{\partial g_i}{\partial z_j}(\bar{x}, t\bar{u} + (1-t)\bar{v}) \right|$$

Also observe that $\bar{g}(\bar{x}_0, \bar{0}) = -A^{-1} \bar{f}(\bar{x}_0, \bar{y}_0) = 0$. So, once again, by continuity, if \bar{x} is sufficiently close to \bar{x}_0, $\bar{g}(\bar{x}, \bar{0})$ will be small enough that (H2) is satisfied.

We conclude from the Contraction Mapping Theorem that, assuming A is invertible, $\bar{f}(\bar{x}, \bar{y}) = 0$ has exactly one solution, $\bar{y}(\bar{x})$, near \bar{y}_0 for each \bar{x} sufficiently near \bar{x}_0. That’s the existence and uniqueness part of the

Theorem (Implicit Function Theorem) Let $n, d \in \mathbb{N}$ and let $U \subset \mathbb{R}^{n+d}$ be an open set. Let $\bar{f} : U \to \mathbb{R}^d$ be C^∞ with $\bar{f}(\bar{x}_0, \bar{y}_0) = 0$ for some $\bar{x}_0 \in \mathbb{R}^n$, $\bar{y}_0 \in \mathbb{R}^d$ with $(\bar{x}_0, \bar{y}_0) \in U$.

© Joel Feldman. 2008. All rights reserved. March 30, 2008 The Contraction Mapping Theorem 4
Assume that \(\det \left[\frac{\partial f}{\partial y}, (x_0, y_0) \right] \) for all \(i,j \leq d \) \(\neq 0 \). Then there exist open sets \(V \subset \mathbb{R}^{n+d} \) and \(W \subset \mathbb{R}^n \) with \(x_0 \in W \) and \((x_0, y_0) \in V \) such that

for each \(x \in W \), there is a unique \((x, y) \in V \) with \(f(x, y) = 0 \).

If the \(y \) above is denoted \(Y(x) \), then \(\nabla : W \to \mathbb{R}^d \) is \(C^\infty \), \(\nabla(x_0) = y_0 \) and \(f(x, Y(x)) = 0 \) for all \(x \in W \). Furthermore

\[
\frac{\partial Y}{\partial x}(x) = -\left[\frac{\partial f}{\partial y}(x, Y(x)) \right]^{-1} \frac{\partial f}{\partial x}(x, Y(x))
\]

(1)

where \(\frac{\partial f}{\partial x} \) denotes the \(d \times n \) matrix \(\left[\frac{\partial f}{\partial x_{i,j}} \right]_{1 \leq i \leq d, 1 \leq j \leq n} \), \(\frac{\partial f}{\partial y} \) denotes the \(d \times n \) matrix of first partial derivatives of \(f \) with respect to \(x \) and \(\frac{\partial f}{\partial y} \) denotes the \(d \times d \) matrix of first partial derivatives of \(f \) with respect to \(y \).

Proof: We have already proven the existence and uniqueness part of the theorem.

The rest will follow once we know that \(Y(x) \) has one continuous derivative, because then differentiating \(f(x, Y(x)) = 0 \) with respect to \(x \) gives

\[
\frac{\partial f}{\partial x}(x, Y(x)) + \frac{\partial f}{\partial y}(x, Y(x)) \frac{\partial Y}{\partial x}(x) = 0
\]

which implies (1). (The inverse of the matrix \(\frac{\partial f}{\partial y}(x, Y(x)) \) exists, for all \(x \) close enough to \(x_0 \), because the determinant of \(\frac{\partial f}{\partial y}(x, y) \) is nonzero for all \((x, y) \) close enough to \((x_0, y_0) \), by continuity.) Once we have (1), the existence of, and formulae for, all higher derivatives follow by repeatedly differentiating (1). For example, if we know that \(Y(x) \) is \(C^1 \), then the right hand side of (1) is \(C^1 \), so that \(\frac{\partial Y}{\partial x}(x) \) is \(C^1 \) and \(Y(x) \) is \(C^2 \).

We have constructed \(Y(x) \) as the limit of the sequence of approximations \(Y_n(x) \) determined by \(Y_n(x) = y_0 \) and

\[
Y_{n+1}(x) = Y_n(x) - A^{-1}f(x, Y_n(x))
\]

(2)

Since \(Y_0(x) \) is \(C^\infty \) (it’s a constant) and \(f \) is \(C^\infty \) by hypothesis, all of the \(Y_n(x) \)’s are \(C^\infty \) by induction and the chain rule. We could prove that \(Y(x) \) is \(C^1 \) by differentiating (2) to get an inductive formula for \(\frac{\partial Y}{\partial x}(x) \) and then proving that the sequence \(\{ \frac{\partial Y}{\partial x}(x) \}_{n \in \mathbb{N}} \) of derivatives converges uniformly.

Instead, we shall pick any unit vector \(\hat{e} \in \mathbb{R}^d \) and prove that the directional derivative of \(Y(x) \) in direction \(\hat{e} \) exists and is given by formula (1) multiplying the vector \(\hat{e} \). Since the right hand side of (1) is continuous in \(x \), this will prove that \(Y(x) \) is \(C^1 \). We have
\[\vec{f}(\vec{x} + h \hat{e}, \vec{Y}(\vec{x} + h \hat{e})) = 0 \] for all sufficiently small \(h \in \mathbb{R} \). Hence

\[
0 = \lim_{h \to 0} \frac{\vec{f}(\vec{x} + h \hat{e}, \vec{Y}(\vec{x} + h \hat{e})) - \vec{f}(\vec{x}, \vec{Y}(\vec{x}))}{h} = \frac{\text{d}}{dt} \bigg|_{t=0} \vec{f}(\vec{x} + th \hat{e}, t\vec{Y}(\vec{x} + h \hat{e}) + (1 - t)\vec{Y}(\vec{x}))
\]

\[
= \int_0^1 \frac{\partial \vec{f}}{\partial \vec{x}} \hat{e} \, dt + \int_0^1 \frac{\partial \vec{f}}{\partial \vec{y}} [\vec{Y}(\vec{x} + h \hat{e}) - \vec{Y}(\vec{x})] \, dt
\]

where the arguments of both \(\frac{\partial \vec{f}}{\partial \vec{x}} \) and \(\frac{\partial \vec{f}}{\partial \vec{y}} \) are \((\vec{x} + th \hat{e}, t\vec{Y}(\vec{x} + h \hat{e}) + (1 - t)\vec{Y}(\vec{x})) \). Note that \([\vec{Y}(\vec{x} + h \hat{e}) - \vec{Y}(\vec{x})] \) is independent of \(t \) and hence can be factored out of the second integral. Dividing by \(h \) gives

\[
\frac{1}{h} [\vec{Y}(\vec{x} + h \hat{e}) - \vec{Y}(\vec{x})] = -\left[\int_0^1 \frac{\partial \vec{f}}{\partial \vec{y}} \, dt \right]^{-1} \int_0^1 \frac{\partial \vec{f}}{\partial \vec{x}} \hat{e} \, dt \quad (3)
\]

Since

\[
\lim_{h \to 0} \left(\vec{x} + th \hat{e}, t\vec{Y}(\vec{x} + h \hat{e}) + (1 - t)\vec{Y}(\vec{x}) \right) = (\vec{x}, \vec{Y}(\vec{x}))
\]

uniformly in \(t \in [0, 1] \), the right hand side of (3) — and hence the left hand side of (3) — converges to

\[
-\left[\frac{\partial \vec{f}}{\partial \vec{y}} (\vec{x}, \vec{Y}(\vec{x})) \right]^{-1} \frac{\partial \vec{f}}{\partial \vec{x}} (\vec{x}, \vec{Y}(\vec{x})) \hat{e}
\]

as \(h \to 0 \), as desired.

\[\blacksquare\]