
Taylor Series and Asymptotic Expansions

The importance of power series as a convenient representation, as an approximation tool, as a tool for

solving differential equations and so on, is pretty obvious. What may not be so obvious is that power series

can be very useful even when they diverge!

Let us start by considering Taylor series. If f : [−a, a] → ∞ has infinitely many continuous derivatives,

Taylor’s theorem says that for each n ∈ IN ∪ {0},
f(x) = Pn(x) +Rn(x)

with Pn(x) =

n∑

m=0

1
m!f

(m)(0)xm

Rn(x) =
1

(n+1)!f
(n+1)(x′)xn+1 for some x′ between 0 and x

Since f (n+1) is continuous, there exists a constant Mn such that |Rn(x)| ≤ Mnx
n+1 for all x ∈ [−a, a]. This

says that as x gets smaller and smaller, the polynomial Pn(x) becomes a better and better approximation

to f(x). The rate at which Pn(x) tends to f(x) as x tends to zero is, at worst, proportional to xn+1. Thus

the Taylor series
∑∞

m=0
1
m!f

(m)(0)xm is an asymptotic expansion for f(x) where

Definition.
∑∞

m=0 amxm is said to be an asymptotic expansion for f(x), denoted f(x) ∼ ∑∞
m=0 amxm

if, for each n ∈ IN ∪ {0},

lim
x→0

1
xn

[

f(x)−
n∑

m=0

amxm
]

= 0

There are several important observations to make about this definition.

(i) The definition says that, for each fixed n,
∑n

m=0 amxm becomes a better and better approximation to

f(x) as x gets smaller. As x → 0,
∑n

m=0 amxm approaches f(x) faster than xn tends to zero.

(ii) The definition says nothing about what happens as n → ∞. There is no guarantee that for each fixed

x,
∑n

m=0 amxm tends to f(x) as n → ∞.

(iii) In particular, the series
∑∞

m=0 amxm may have radius of convergence zero. In this case,
∑∞

m=0 amxm is

just a formal symbol. It does not have any meaning as a series.

(iv) We have seen that every infinitely differentiable function has an asymptotic expansion, regardless of

whether its Taylor series converges or not.

Now back to our Taylor series. There are three possibilities.

(i) The series
∑∞

m=0
1
m!f

(m)(0)xm has radius of convergence zero.

(ii) The series
∑∞

m=0
1
m!f

(m)(0)xm has radius of convergence r > 0 and lim
n→∞

Rn(x) = 0 for all −r < x < r.

In this case the Taylor series converges to f(x) for all x ∈ (−r, r). Then f(x) is said to be analytic on

(−r, r).

(iii) The series
∑∞

m=0
1
m!f

(m)(0)xm has radius of convergence r > 0 and the Taylor series converges to

something other than f(x).

Here is an example of each of these three types of behaviour.

Example (i) For this example, f(x) =
∫∞

0
e−t

1+x2t dt. Our work on interchanging the order of differentiation

and integration yields that f(x) is infinitely differentiable and that the derivatives are given by

dn

dxn f(x) =

∫ ∞

0

∂n

∂xn

(
e−t

1+x2t

)
dt
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Instead of evaluating the derivative directly, we will use a little trick to generate the Taylor series for f(x).

Recall that
N∑

n=0

rn = 1
1−r − rN+1

1−r

We just substitute r = −x2t to give

1
1+x2t =

N∑

n=0

(−x2t)
n
+ (−x2t)

N+1

1+x2t

and

f(x) =

N∑

n=0

∫ ∞

0

(−x2t)
n
e−t dt+

∫ ∞

0

(−x2t)
N+1

1+x2t e−t dt

=

N∑

n=0

(−1)nx2n

∫ ∞

0

tne−t dt+ (−1)N+1x2(N+1)

∫ ∞

0

tN+1

1+x2te
−t dt

=

N∑

n=0

(−1)nn!x2n + (−1)N+1x2(N+1)

∫ ∞

0

tN+1

1+x2te
−t dt

since(1)
∫∞

0
tne−t dt = n!. To compute the mth derivative, f (m)(0), we choose N such that 2(N + 1) > m

and apply

dm

dxmx2n
∣
∣
∣
x=0

=

{
0 if m 6= 2n
(2n)! if m = 2n

Applying dm

dxm with m < 2(N + 1) to (−1)N+1x2(N+1)
∫∞

0
tN+1

1+x2te
−t dt gives a finite sum with every term

containing a factor xp with p > 0. When x is set to 0, every such term is zero. So

dm

dxm f(x)
∣
∣
∣
x=0

=

{
0 if m is odd
(−1)

m
2

(
m
2

)
!m! if m is even

So the Taylor series expansion of f is

∞∑

m=0

1
m!f

(m)(0)xm =

∞∑

m=0
m even

1
m! (−1)

m
2

(
m
2

)
!m!xm m=2n

=

∞∑

n=0

(−1)nn!x2n

The high growth rate of n! makes the radius of convergence of this series zero. For example, one formula

for the radius of convergence of
∑∞

n=0 anx
n is

[

lim
n→∞

∣
∣an+1

an

∣
∣

]−1

. When an = (−1)nn!,
[

lim
n→∞

∣
∣an+1

an

∣
∣

]−1

=
[
lim
n→∞

(n + 1)
]−1

= 0. Replacing x by x2 gives that
∑∞

n=0(−1)nn!x2n converges if and only if x = 0.

Nonetheless, the error estimates

∣
∣
∣
∣
f(x)−

N∑

n=0

(−1)nn!x2n

∣
∣
∣
∣
= x2(N+1)

∫ ∞

0

tN+1

1+x2te
−t dt ≤ x2(N+1)

∫ ∞

0

tN+1e−t dt = (N + 1)!x2N+2

shows that if we fix N and make x smaller and smaller,
∑N

n=0(−1)nn!x2n becomes a better and better

approximation to f(x). On the other hand, if we fix x and let N grow, we see that the error grows

dramatically for large N . Here is a graph of y = (N+1)!x2N+2 against N , for several different (fixed) values

of x.

(1) Denote γn =
∫

∞

0
tne−t dt. Then γ0 =

∫
∞

0
e−t dt = 1 and, by integration by parts with u = tn, dv = e−tdt, du = ntn−1dt

and v = −e−t, γn = nγn−1 for all n ∈ IN. So, by induction, γn = n!.

c© Joel Feldman. 2016. All rights reserved. December 31, 2016 Taylor Series and Asymptotic Expansions 2



1

2

3

(N + 1)!x2N+2

1 2 3 4 5 6 7 8 9 10 N

x = 0.75 x = 0.6 x = 0.5 x = 0.4

Example (ii) For this example, f(x) = ex. By Taylor’s theorem,

f(x) =

n∑

m=0

xm

m! + Rn(x)

with Rn(x) = ex
′

(n+1)!x
n+1 for some x′ between 0 and x. In this case,

∑∞
m=0

xm

m! has radius of convergence

infinity and the error
∣
∣Rn(x)

∣
∣ ≤ 1

(n+1)!e
|x||x|n+1 tends to zero both

(a) when n is fixed and x tends to zero and

(b) when x is fixed and n tends to infinity. Use R̄n(x) =
1

(n+1)!e
|x||x|n+1 to denote our bound on the

error introduced by truncating the series at xn

n! . Then R̄n+1(x) = |x|
n+2 R̄n(x). So if, for example,

n ≥ 2|x|, then increasing the index n of R̄n(x) by one reduces the value of R̄n(x) by a factor of at

least two.

Example (iii) For this example,

f(x) =

{

e−1/x2

if x 6= 0
0 if x = 0

Of course by the usual differentiation rules, f(x) is infinitely differentiable, except possibly at x = 0. I shall

show below that f is also infinitely differentiable at x = 0 and f (n)(0) = 0 for every n ∈ IN ∪ {0}. So in this

case, the Taylor series is
∑∞

n=0 0x
n and has infinite radius of convergence. When we approximate f(x) by

the Taylor polynomial,
∑n

m=0 0x
m, of degree n, the error, Rn(x) = f(x), is independent of n. The function

f(x) agrees with its Taylor series only for x = 0. Similarly, the function

g(x) =

{

e−1/x2

if x > 0
0 if x ≤ 0

agrees with its Taylor series if and only if x ≤ 0.

Here is the argument that f is infinitely differentiable at x = 0 and f (n)(0) = 0 for every n ∈ IN ∪ {0}.
First note that, by the usual differentiation rules, when x 6= 0, every derivattive f (n)(x) is some polynomial

in 1
x times e−1/x2

. For any x 6= 0 and any integer n ≥ 0

e1/x
2

= 1 + 1
x2 + 1

2!

(
1
x2

)2
+ · · ·+ 1

n!

(
1
x2

)n
+ · · · ≥ 1

n!

(
1
x2

)n

Consequently, for any polynomial P (y), say of degree p, there is a constant C such that

∣
∣P

(
1
x

)
e−1/x2∣

∣ =

∣
∣
∣
∣

P
(
1
x

)

e1/x
2

∣
∣
∣
∣
≤

C 1
|x|p

1
(p+1)!

1
x2(p+1)

≤ (p+ 1)!C |x|2+p
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for all |x| ≤ 1. Hence, for any polynomial P (y),

lim
x→0

P
(
1
x

)
e−1/x2

= 0. (1)

Applying (1) with P (y) = y, we have

f ′(0) = lim
x→0

f(x)−f(0)
x = lim

x→0

1
x e−1/x2

= 0 =⇒ f ′(x) =

{
0 if x = 0
2
x3 e

−1/x2

if x 6= 0

Applying (1) with P (y) = 2y4, we have

f ′′(0) = lim
x→0

f ′(x)−f ′(0)
x = lim

x→0

1
x

(
2
x3

)
e−1/x2

=⇒ f ′′(x) =

{
0 if x = 0
(
− 6

x4 + 4
x6

)
e−1/x2

if x 6= 0

Indeed, for any n ≥ 1, if f (n−1)(x) = Pn−1

(
1
x

)
e−1/x2

for all x 6= 0, then applying (1) with P (y) = yPn−1(y)

gives

f (n)(0) = lim
x→0

f(n−1)(x)−f(n−1)(0)
x = lim

x→0

1
xPn−1

(
1
x

)
e−1/x2

= 0

and hence

f (n)(x) =

{
0 if x = 0
[
− 1

x2P
′
n−1

(
1
x

)
+ 2

x3Pn−1

(
1
x

)]
e−1/x2

if x 6= 0

Example (iv) Stirling’ formula lnn! ≈
(
n+ 1

2

)
lnn− n+ ln

√
2π actually consists of the first few terms of

an asymptotic expansion

lnn! ∼
(
n+ 1

2

)
lnn− n+ ln

√
2π + 1

12
1
n − 1

360
1
n2 + · · ·

If n > 10, the approximation lnn! ≈
(
n+ 1

2

)
lnn−n+ ln

√
2π is accurate to within 0.06% and the exponen-

tiated form

n! ≈ nn+ 1
2

√
2πe−n+ 1

12n

is accurate to one part in 300,000. But fixing n and taking many more terms in the expansion will in fact

give you a much worse approximation to lnn!.

Laplace’s Method

Stirling’s formula may be generated by Laplace’s method – one of the more common ways of generating

asymptotic expansions. Laplace’s method provides good approximations to integrals of the form I(s) =
∫
e−sf(x) dx when s is very large and the function f is reasonably smooth and takes its minimum value at

a unique point, xm. The method is based on the following three observations.

(i) When s is very large and x 6= xm, e−sf(x) = e−sf(xm)e−s[f(x)−f(xm)] ≪ e−sf(xm), since f(x)−f(xm) > 0.

So, for large s, the integral will be dominated by values of x near xm.

(ii) For x near xm

f(x) ≈ f(xm) + 1
2f

′′(xm)(x − xm)2

since f ′(xm) = 0.

(iii) Integrals of the form
∫∞

−∞ e−a(x−xm)2 dx, or more generally
∫∞

−∞ e−a(x−xm)2(x − xm)n dx, can be com-

puted exactly.

Let’s implement this strategy for the Γ function, defined in the lemma below. This will give Stirling’s

formula, because of part (d) of the lemma.
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Lemma. Define, for s > 0, the Gamma function

Γ(s) =

∫ ∞

0

ts−1e−t dt

(a) Γ(1) = 1

(b) Γ
(
1
2

)
=

√
π.

(c) For any s > 0, Γ(s+ 1) = sΓ(s).

(d) For any n ∈ IN, Γ(n+ 1) = n!.

Proof: (a) is a trivial integration.

(b) Make the change of variables t = x2, dt = 2x dx = 2
√
t dx. This gives

Γ
(
1
2

)
=

∫ ∞

0

t−
1
2 e−t dt = 2

∫ ∞

0

e−x2

dx =

∫ ∞

−∞

e−x2

dx

We compute the square of this integral by switching

Γ
(
1
2

)2
=

(∫ ∞

−∞

e−x2

dx

)(∫ ∞

−∞

e−y2

dy

)

=

∫∫

IR2

e−(x2+y2) dx dy

to polar coordinates. This standard trick gives

Γ
(
1
2

)2
=

∫ 2π

0

dθ

∫ ∞

0

dr re−r2 =

∫ 2π

0

dθ
[
− 1

2e
−r2

]∞

0
= 1

2

∫ 2π

0

dθ = π

(c) By by integration by parts with u = ts, dv = e−tdt, du = sts−1dt and v = −e−t

Γ(s+ 1) =

∫ ∞

0

tse−t dt = ts(−e−t)
∣
∣
∞

0
−
∫ ∞

0

(−e−t)sts−1 dt = s

∫ ∞

0

ts−1e−t dt = sΓ(s)

(d) is obvious by induction, using parts (a) and (c).

To derive Stirling’s formula, using Laplace’s method, We first manipulate Γ(s + 1) into the form
∫
e−sf(x) dx.

Γ(s+ 1) =

∫ ∞

0

tse−t dt

= ss+1

∫ ∞

0

xse−xs dx where t = xs

= ss+1e−s

∫ ∞

0

e−s(x−lnx−1) dx

So f(x) = x − lnx − 1 and f ′(x) = 1 − 1
x . Consequently f ′(x) < 0 for x < 1 and f ′(x) > 0 for x > 1, so

that f has a unique minimum at x = 1 and increases monotonically as x gets farther from 1. The minimum

value of f is f(1) = 0. (We multiplied and divided by e−s in the last line above in order to arrange that the

minimum value of f be exactly zero.)
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If ε > 0 is any fixed positive number,

∫ ∞

0

e−sf(x) dx ≈
∫ 1+ε

1−ε

e−sf(x) dx

will be a good approximation for any sufficiently large s, because, when x 6= 1, f(x) > 0 and lim
s→∞

e−sf(x) = 0.

We will derive, in an appendix, explicit bounds on the error introduced by this approximation as well as by

the other approximations we make in the course of this development.

The remaining couple of steps in the procedure are motivated by the fact that integrals of the form
∫∞

−∞
e−a(x−xm)2(x− xm)n dx can be computed exactly. If we have chosen ε pretty small, Taylor’s formula

f(x) ≈ f(1) + f ′(1)(x− 1) + 1
2f

(2)(1)(x− 1)2 + 1
3!f

(3)(1)(x− 1)3 + 1
4!f

(4)(1)(x − 1)4

= 1
2

[
1
x2

]

x=1
(x− 1)2 + 1

3!

[
− 2

x3

]

x=1
(x− 1)3 + 1

4!

[
2×3
x4

]

x=1
(x− 1)4

= 1
2 (x− 1)2 − 1

3 (x− 1)3 + 1
4 (x− 1)4

will give a good approximation for all |x− 1| < ε, so that

∫ ∞

0

e−sf(x) dx ≈
∫ 1+ε

1−ε

e−s[ 12 (x−1)2− 1
3 (x−1)3+ 1

4 (x−1)4] dx =

∫ 1+ε

1−ε

e−
s
2 (x−1)2e[

s
3 (x−1)3− s

4 (x−1)4] dx

(We shall find the first two terms an expansion for Γ(s+1). If we wanted to find more terms, we would keep

more terms in the Taylor expansion of f(x).) )

The next step is to Taylor expand e[
s
3 (x−1)3− s

4 (x−1)4] about x = 1, in order to give integrands of the form

e−
s
2 (x−1)2(x− 1)n. We could apply Taylor’s formula directly, but it is easier to use the known expansion of

the exponential.

∫ ∞

0

e−sf(x) dx ≈
∫ 1+ε

1−ε

e−
s
2 (x−1)2

{

1 +
[
s
3 (x − 1)3 − s

4 (x− 1)4
]
+ 1

2

[
s
3 (x− 1)3 − s

4 (x− 1)4
]2
}

dx

≈
∫ 1+ε

1−ε

e−
s
2 (x−1)2

{

1 + s
3 (x− 1)3 − s

4 (x − 1)4 + s2

18 (x− 1)6
}

dx

≈
∫ ∞

−∞

e−
s
2 (x−1)2

{

1 + s
3 (x − 1)3 − s

4 (x− 1)4 + s2

18 (x− 1)6
}

dx

=

∫ ∞

−∞

e−
s
2 (x−1)2

{

1− s
4 (x − 1)4 + s2

18 (x − 1)6
}

dx

since (x − 1)3e−
s
2 (x−1)2 is odd about x = 1 and hence integrates to zero. For n an even natural number

∫ ∞

−∞

e−
s
2 (x−1)2(x− 1)n dx =

(
s
2

)−n+1
2

∫ ∞

−∞

e−y2

yn dy where y =
√

s
2 (x− 1)

= 2
(
s
2

)−n+1
2

∫ ∞

0

e−y2

yn dy

=
(
s
2

)−n+1
2

∫ ∞

0

e−tt
n
2 − 1

2 dt where t = y2, dt = 2y dy = 2
√
t dy

=
(
s
2

)−n+1
2 Γ

(
n+1
2

)

(2)

By the lemma at the beginning of this section,

Γ
(
1
2

)
=

√
π Γ

(
3
2

)
= 1

2Γ
(
1
2

)
= 1

2

√
π Γ

(
5
2

)
= 3

2Γ
(
3
2

)
= 3

2
1
2

√
π Γ

(
7
2

)
= 5

2Γ
(
5
2

)
= 5

2
3
2
1
2

√
π
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so that ∫ ∞

0

e−s(x−lnx−1) dx ≈
(
s
2

)− 1
2Γ

(
1
2

)
− s

4

(
s
2

)− 5
2Γ

(
5
2

)
+ s2

18

(
s
2

)− 7
2Γ

(
7
2

)
+ · · ·

= s−
1
2

√
2π

(

1− 1
s
1
44

3
2
1
2 + 1

s
1
188

5
2
3
2
1
2 + · · ·

)

= s−
1
2

√
2π

(

1− 3
4s + 5

6s + · · ·
)

and

Γ(s+ 1) = ss+
1
2 e−s

√
2π

(

1 + 1
12s + · · ·

)

So we have the first two terms in the asymptotic expansion for Γ. We can obviously get as many as we like

by taking more and more terms in the Taylor expansion for f(x) and ey. So far, we have not attempted to

keep track of the errors introduced by the various approximations. It is not hard to do so, but it is messy.

So we have relegated the error estimates to the appendix.

“Summability”

We have now seen one way in which divergent expansions may be of some use. There is another

possibility. Even if we cannot take the sum of the series
∑∞

n=0 an in the conventional sense, there may be

some more general sense in which the series is “summable”. We will just briefly take a look at two such

generalizations. Suppose that
∑∞

n=0 an is a (possibly divergent) series. Let

SN =
N∑

n=0

an

denote the series’ partial sum. Then the series is said to converge in the sense of Cesàro if the limit

SC = lim
N→∞

S0+S1+···+SN

N+1

exists. That is, if the limit of the average of the partial sums exists. The series is said to converge in the

sense of Borel if the power series

g(t) =

∞∑

n=0

an

n! t
n

has radius of convergence ∞ and the integral

SB =

∫ ∞

0

e−tg(t) dt

converges. As the following theorem shows, these two definitions each extends our usual definition of series

convergence.

Theorem. If the series
∑∞

n=0 an converges, then SC and SB both exist and

SC = SB =

∞∑

n=0

an

Proof that SC =
∑∞

n=0 an. Write S =
∑∞

n=0 an and σN = S0+S1+···+SN

N+1 and observe that

S − σN =
(S − S0) + (S − S1) + · · ·+ (S − SN )

N + 1
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Pick any ε > 0. Since S = lim
n→∞

Sn there is an M such that |S − Sm| < ε
2 for all m ≥ M . Also since

S = lim
n→∞

Sn, the sequence
{
Sn

}
is bounded. That is, there is a K such that |Sn| ≤ K for all n ≥ 0. So if

N > max
{
2MK
ε/2 ,M

}

∣
∣S − σN

∣
∣ ≤ |S − S0|+ |S − S1|+ · · ·+ |S − SN |

N + 1

=
|S − S0|+ |S − S1|+ · · ·+ |S − SM−1|

N + 1
+

|S − SM |+ |S − SM+1|+ · · ·+ |S − SN |
N + 1

<
2K + 2K + · · ·+ 2K

N + 1
+

ε
2 + ε

2 + · · ·+ ε
2

N + 1

≤ 2MK

N + 1
+

N −M + 1

N + 1

ε

2

≤ ε

2
+

ε

2
= ε

Hence lim
N→∞

σN = S and SC = S.

“Proof” that SB =
∑∞

n=0 an. Write

S =

∞∑

n=0

an =

∞∑

n=0

an

n! n! =

∞∑

n=0

an

n!

∫ ∞

0

e−ttn dt =

∫ ∞

0

g(t)
︷ ︸︸ ︷
∞∑

n=0

an

n! t
n e−t dt

The last step, namely the exchange
∞∑

n=0

∫∞

0
=

∫∞

0

∞∑

n=0
can be justified rigorously. If the radius of convergence

of the series
∑∞

n=0 anα
n is strictly greater than one, the justification is not very hard. But in general it is

too involved to give here. That’s why “Proof” is in quotation marks.

The converse of this theorem is false of course. Consider, for example,
∑∞

n=0(−r)n with r 6= −1. Then,

as n → ∞,

Sn =

n∑

m=0

(−r)m = 1−(−r)n+1

1+r

converges to 1
1+r if |r| < 1 and diverges if |r| ≥ 1. But

σN = 1
N+1

N∑

n=0

Sn = 1
N+1

1
1+r

[ N∑

n=0

1−
N∑

n=0

(−r)n+1
]

= 1
N+1

1
1+r

[

N + 1− (−r)−(−r)N+2

1+r

]

= 1
1+r + 1

N+1
r

(r+1)2 + 1
N+1

(−r)N+2

(r+1)2

As N → ∞, this converges to 1
1+r if |r| ≤ 1, r 6= −1, and diverges if |r| > 1. And

g(t) =

∞∑

n=0

(−r)n

n! tn = e−rt =⇒
∫ ∞

0

e−tg(t) dt =

∫ ∞

0

e−(1+r)t dt = 1
1+r

if r > −1 and diverges otherwise. Collecting together these three results,

∞∑

n=0

(−r)n = 1
1+r







in the conventional sense if r ∈ (−1, 1)
in the sense of Cesàro if r ∈ (−1, 1]
in the sense of Borel if r ∈ (−1,∞)
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By way of conclusion, let me remark that these generalized modes of summation are not just math-

ematician’s toys. The Fourier series of any continuous function converges in the sense of Cesàro. To get

conventional convergence, one needs a certain amount of smoothness in addition of continuity. Also the

calculation of the Lamb shift of the hydrogen atom spectrum, which provided (in addition to a Nobel prize)

spectacular numerical agreement with one of the most accurate measurements in science, consisted of adding

up the first few terms of a series. The rigorous status of this series is not known. But a number of similar

series (arising in other quantum field theories) are known to diverge in the conventional sense but to converge

in the sense of Borel.

Appendix - Error Terms for Stirling’s Formula

In this appendix, we will treat the error terms arising in our development of Stirling’s formula. A precise

statement of that development is

Step 1. Recall that f(x) = x− lnx− 1. Write

∫ ∞

0

e−sf(x) dx =

∫ 1+ε

1−ε

e−sf(x) dx+

∫ 1−ε

0

e−sf(x) dx+

∫ ∞

1+ε

e−sf(x) dx

and discard the last two terms.

Step 2. Write
∫ 1+ε

1−ε

e−sf(x) dx =

∫ 1+ε

1−ε

e−
1
2 s(x−1)2e−s[f(x)− 1

2 (x−1)2] dx

Apply et = 1 + t+ 1
2 t

2 + ec 1
3! t

3 with t = −s
[
f(x)− 1

2 (x− 1)2
]
to give

e−s[f(x)− 1
2 (x−1)2] = 1− s

[
f(x)− 1

2 (x− 1)2
]
+ 1

2s
2
[
f(x)− 1

2 (x− 1)2
]2

− ec 1
3!s

3
[
f(x)− 1

2 (x − 1)2
]3

where c is between 0 and −s
[
f(x) − 1

2 (x− 1)2
]
. Discard the last term.

Step 3. Taylor expand

f(x)− 1
2 (x− 1)2 = − 1

3 (x− 1)3 + 1
4 (x− 1)4 − 1

5 (x− 1)5 + f(6)(c′)
6! (x− 1)6

for some c′ ∈ [1 − ε, 1 + ε], substitute this into 1 − s
[
f(x) − 1

2 (x − 1)2
]
+ 1

2s
2
[
f(x) − 1

2 (x − 1)2
]2

and

discard any terms that contain f (6)(c′) and any terms of the form sm(x − 1)n with m − n+1
2 ≤ − 5

2 .

(You’ll see the reason for this condition shortly.) This leaves

∫ 1+ε

1−ε

e−
1
2 s(x−1)2

{

1− s
4 (x− 1)4 + s2

18 (x − 1)6
}

dx

because the terms with n odd integrate to zero.

Step 4. Replace
∫ 1+ε

1−ε
by

∫∞

−∞

The errors introduced in each step are as follows:

Step 1.
∫ 1−ε

0 e−sf(x) dx and
∫∞

1+ε e
−sf(x) dx

Step 2.
∫ 1+ε

1−ε
e−

1
2 s(x−1)2ec 1

3!s
3
[
f(x)− 1

2 (x− 1)2
]3

dx

Step 3. A finite number of terms, each of the form a numerical constant times an integral
∫ 1+ε

1−ε e−
1
2 s(x−1)2sm(x − 1)n dx with m − n+1

2 ≤ − 5
2 . Here we have used that, since c′ ∈ [1 − ε, 1 + ε],

there is a constant M̄ such that |f (6)(c′)| ≤ M̄ .
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Step 4. A finite number of terms, each of the form a numerical constant times an integral
∫

|x−1|≥ε
e−

1
2 s(x−1)2sm(x− 1)n dx.

To treat these error terms, we use the following information about f(x) = x− lnx− 1.

(F1) f increases monotonically as |x− 1| increases.
(F2) We have fixed some small ε > 0. There is a δ > 0 such that f(x) ≥ δ(x − 1) for all x ≥ 1 + ε.

To see that this is the case, we first observe that

d
dx

(
f(x)− δ(x− 1)

)
= 1− δ − 1

x ≥ 0

if x ≥ 1
1−δ . So it suffices to pick δ sufficiently small that 1+ ε ≥ 1

1−δ and that f(1+ ε)− δε ≥ 0.

The latter is always possible just because f(1 + ε) > 0.

(F3) For each x ∈ [1− ε, 1 + ε] there is a c′′ ∈ [1− ε, 1 + ε] such that

f(x)− 1
2 (x− 1)2 = 1

3!f
(3)(c′′) (x− 1)3

Hence, there is a constant M such that

∣
∣f(x)− 1

2 (x− 1)2
∣
∣ ≤ M |x− 1|3

for all x ∈ [1− ε, 1 + ε].

(F4) If x ∈ [1− ε, 1 + ε] with ε small enough that εM ≤ 1
4 ,

∣
∣f(x)− 1

2 (x− 1)2
∣
∣ ≤ M |x− 1|3 ≤ 1

4 (x− 1)2

We can now get upper bounds on each of the error terms. For step 1, we have

∫ 1−ε

0

e−sf(x) dx
F1
≤ e−sf(1−ε)

∫ 1−ε

0

dx ≤ e−sf(1−ε)

and ∫ ∞

1+ε

e−sf(x) dx
F2
≤

∫ ∞

1+ε

e−sδ(x−1) dx = 1
δse

−δεs

For step 2, we have

∫ 1+ε

1−ε

e−
1
2 s(x−1)2ec 1

3!s
3
∣
∣f(x)− 1

2 (x− 1)2
∣
∣
3
dx

F4
≤ 1

3!s
3

∫ 1+ε

1−ε

e−
s
2 (x−1)2e

s
4 (x−1)2

∣
∣f(x)− 1

2 (x − 1)2
∣
∣
3
dx

F3
≤ 1

3!M
3s3

∫ 1+ε

1−ε

e−
s
4 (x−1)2 |x− 1|9 dx

≤ 1
3!M

3s3
∫ ∞

−∞

e−
s
4 (x−1)2 |x− 1|9 dx

= 1
3!M

3s3
(
s
4

)−5
Γ(5) = M ′s−2 as in (2)

For step 3, we have

∫ 1+ε

1−ε

e−
s
2 (x−1)2sm|x− 1|n dx ≤

∫ ∞

−∞

e−
s
2 (x−1)2sm|x− 1|n dx

= sm
(
s
2

)−n+1
2 Γ

(
n+1
2

)
as in (2)

≤ M ′′s−
5
2
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if m− n+1
2 ≤ − 5

2 . For step 4, we have

∫

|x−1|≥ε

e−
s
2 (x−1)2sm|x− 1|n dx =

∫

|x−1|≥ε

e−
s
4 (x−1)2e−

s
4 (x−1)2sm|x− 1|n dx

≤ e−
1
4 ε

2s

∫

|x−1|≥ε

e−
s
4 (x−1)2sm|x− 1|n dx

≤ e−
1
4 ε

2s

∫ ∞

−∞

e−
s
4 (x−1)2sm|x− 1|n dx

= e−
1
4 ε

2ssm
(
s
4

)−n+1
2 Γ

(
n+1
2

)
as in (2)

= M ′′′sm−n+1
2 e−

1
4 ε

2s

As promised these error terms all decay faster than
√
2πs−

1
2

(
1 + 1

12s

)
as s → ∞. In particular, error terms

introduced in Steps 1 and 4, by ignoring contributions for |x− 1| ≥ ε, decay exponentially as s → ∞. Error

terms introduced in Steps 2 and 3, by dropping part of the Taylor series approximation, decay like s−p for

some p, depending on how much of the Taylor series we discarded. In particular, error terms introduced in

Step 3 decay like s−
5
2 , because of the condition m− n+1

2 ≤ − 5
2 .
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