1) Let \mathcal{E} be the space of 2π-periodic, continuously differentiable, real-valued functions on \mathbb{R} with $\int_{-\pi}^{\pi} f(x) \, dx = 0$; i.e.,

$$\mathcal{E} = \{ f : \mathbb{R} \to \mathbb{R} \mid f \in C^1 \text{ on } \mathbb{R}, \int_{-\pi}^{\pi} f(x) \, dx = 0, \text{ and } f(x+2\pi) = f(x) \text{ for all } x \in \mathbb{R} \}$$

Let the norm $\| \cdot \|_{1,\infty}$ on \mathcal{E} be defined as

$$\| f \|_{1,\infty} = \sup_{x \in \mathbb{R}} |f(x)| + \sup_{x \in \mathbb{R}} |f'(x)|$$

Let d_1 be a metric on \mathcal{E} defined as $d_1(f, g) = \| f - g \|_{1,\infty}$, for $f, g \in \mathcal{E}$.

(a) Recall that for $n \in \mathbb{Z}$ the Fourier coefficient $\hat{f}(n)$ is given as $\hat{f}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx} \, dx$. Prove that for $f \in \mathcal{E}$, $|\hat{f}(n)| \leq \| f \|_{1,\infty}$ and $|n| \| \hat{f}(n) \| \leq \| f \|_{1,\infty}$ for all $n \in \mathbb{Z}$.

(b) Prove that the space \mathcal{E} equipped with the metric d_1 is a complete metric space. (Hint: You may want to use the Fundamental Theorem of Calculus.)

(c) Prove that for every $f \in \mathcal{E}$, its Fourier series converges uniformly to f on \mathbb{R}. In particular, $f(x) = \sum_{n=-\infty}^{\infty} \hat{f}(n)e^{inx}$.

2) Let \mathcal{E} be the space of functions as given in Problem 1. You are allowed/encouraged to use the results/statements of Problem 1.

Let R be an operation on the functions in \mathcal{E}, defined as following: for $f \in \mathcal{E}$ written as the infinite sum $f(x) = \sum_{n=-\infty}^{\infty} \hat{f}(n)e^{inx}$ (this is possible for all $f \in \mathcal{E}$ because of Problem 1(c)), let the function $R[f]$ on \mathbb{R} be defined as

$$R[f](x) = \sum_{n=-\infty}^{\infty} |\hat{f}(100n)|^2 e^{inx}$$

Of course, for this definition to work, we need to prove that the series expression converges. Verify this and furthermore prove that R gives a map from \mathcal{E} to \mathcal{E}. Namely,

(a) prove that the series $\sum_{n=-\infty}^{\infty} |\hat{f}(100n)|^2 e^{inx}$ converges uniformly on \mathbb{R};

(b) prove that $R[f]$ is a real-valued function on \mathbb{R}. (Hint: $f \in \mathcal{E}$ is real-valued);

(c) prove that $R[f]$ is 2π-periodic;

(d) prove that $\int_{-\pi}^{\pi} R[f](x) \, dx = 0$;

(e) prove that $R[f]$ is a continuously differentiable function on \mathbb{R}.

3) Let \mathcal{E} be the space of functions as given in Problem 1 and let $K : \mathcal{E} \to \mathcal{E}$ be a mapping that satisfies for all $f, g \in \mathcal{E}$, $d_1(K[f], K[g]) \leq \frac{1}{2} d_1(f, g)$. Here, the metric d_1 is given in Problem 1. Assume that $K[0] = 0$. Here, 0 denotes the constant zero function. Let $F : \mathcal{E} \to \mathcal{E}$ be defined as $F[f] = f + K[f]$, for $f \in \mathcal{E}$.

(a) Prove that F is injective, i.e. if $F[f] = F[g]$ then $f = g$.

(b) Prove that for all $g \in \mathcal{E}$, with $\|g\|_{1,\infty} \leq \frac{1}{2}$, there exists $f \in \mathcal{E}$, with $\|f\|_{1,\infty} \leq 1$, such that $F[f] = g$.

4) Let $f : [0, 1] \to \mathbb{R}$ be a Riemann integrable function, such that $|f| \leq 1$ on $[0, 1]$. Suppose

$$\int_{0}^{1} f(x)x^n \, dx = 0$$

for all $n \in \mathbb{Z}$, with $n \geq 0$. Let x_0 be a point in the interval $[0, 1]$. Assume that f is continuous at x_0.

Prove that $f(x_0) = 0$.

[Hint: From one of the HW problems, we know that this holds if f is continuous on $[0, 1]$. But, in this problem f is assumed to be continuous only at a fixed point x_0.]
6) Let \(i = \sqrt{-1} \) be the pure imaginary number. Let \(\{ f_n \} \) be the sequence of functions \(f_n : \mathbb{R} \to \mathbb{C} \) defined as \(f_n(x) = e^{inx} \) for \(x \in \mathbb{R} \), i.e. \(f_1(x) = e^{ix}, f_2(x) = e^{i2x}, f_3(x) = e^{i3x}, \ldots \). Let \(\{ g_n \} \) be a sequence of \(2\pi \)-periodic Riemann integrable functions \(g_n : \mathbb{R} \to \mathbb{R} \). Assume that for all \(n \), \(|g_n(x) - g_n(y)| \leq |x - y| \) for all \(x, y \in \mathbb{R} \). Consider the sequence of \(2\pi \)-periodic functions \(\{ f_n * g_n \} \), where \(f_n * g_n : \mathbb{R} \to \mathbb{C} \) is given by

\[
 f_n * g_n(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f_n(x-t) g_n(t) \, dt \quad \text{for } x \in \mathbb{R}
\]

(a) Prove that there exists a subsequence \(\{ h_k \} \) of \(\{ f_n * g_n \} \) such that as \(k \to \infty \), \(h_k \) converges uniformly to a function, say \(h_\infty \), on \(\mathbb{R} \).

(Hint: Observe that for \(n \geq 1 \), \(f_n * g_n = f_n * (g_n - g_n(0)) \).

(b) Let \(\{ u_k \} \) be a subsequence of \(\{ f_n * g_n \} \) such that \(\{ u_k \} \) converges uniformly on \(\mathbb{R} \). (Such a uniformly convergent subsequence exists by the result of (a).) Prove that as \(k \to \infty \), \(u_k \to 0 \) uniformly on \(\mathbb{R} \), i.e.

\[
 \limsup_{k \to \infty} |u_k(x)| = 0.
\]

(Hint: this problem could be hard.)

(c) Use (a) (or the solution of (a)) and (b) to prove that in fact \(f_n * g_n \to 0 \) uniformly on \(\mathbb{R} \).

Extra Problem (This problem is only for extra marks, and it could be difficult. Do not try this unless you have time left after finishing all the previous problems.)

Let \(\mathcal{E} \) be the space of functions given in Problem 1, and let \(R : \mathcal{E} \to \mathcal{E} \) be the mapping given in Problem 2. Let \(X = \{ f \in \mathcal{E} \mid \| f \|_{1,\infty} \leq 1 \} \), i.e. \(X \) is the subset of \(\mathcal{E} \) consisting of functions \(f \) with \(\| f \|_{1,\infty} \). Prove that \(R \) satisfies that for all \(f, g \in X \),

\[
 d_1(R[f], R[g]) \leq \frac{1}{2} d_1(f, g)
\]

Here, the metric \(d_1 \) is as given in Problem 1. You are allowed/encouraged to use the results/statements of Problem 1 and Problem 2. (Hint: If you can solve Problem 2(e), it is likely that you can solve this problem. You may want to use the identity \(|a|^2 - |b|^2 = (|a| + |b|)(|a| - |b|) \) and the inequality

\[
 |a| - |b| \leq |a - b|
\]

for complex numbers \(a, b \in \mathbb{C} \).