1) Define
(a) \(f_a^b f(x) \, dx \)
(b) a self-adjoint algebra of functions
(c) the Fourier series of a function

2) Give an example of each of the following, together with a brief explanation of your example. If an example does not exist, explain why not.
(a) A differentiable function which is not monotonic but whose derivative obeys \(|f'(x)| \geq 1 \).
(b) Two functions \(f, \alpha : [0, 1] \to \mathbb{R} \) with \(f \) continuous, but \(f \notin \mathcal{R}(\alpha) \) on \([0, 1]\).
(c) A continuous function \(f : (-1, 1) \to \mathbb{R} \) that cannot be uniformly approximated by a polynomial.
(d) A monotonically decreasing sequence of functions \(f_n : [0, 1] \to \mathbb{R} \) which converges pointwise, but not uniformly to zero.

3) Let \(f \) be a continuous function on \(\mathbb{R} \). Suppose that \(f'(x) \) exists for all \(x \neq 0 \) and that \(f'(x) \to 3 \) as \(x \to 0 \). Does it follow that \(f'(0) \) exists? You must justify your conclusion.

4) Suppose that the function \(f : [a, b] \to \mathbb{R} \) is differentiable and that there is a number \(D \) such that

\[|f'(x)| \leq D \]

for all \(x \in [a, b] \). Let \(P = \{x_0, x_1, \ldots, x_n\} \) be a partition of \([a, b]\), \(T = \{t_1, \ldots, t_n\} \) be a choice for \(P \) and \(S(P, T, f) = \sum_{i=1}^{n} f(t_i)(x_i - x_{i-1}) \) be the corresponding Riemann sum. Prove that

\[\left| S(P, T, f) - \int_{a}^{b} f(x) \, dx \right| \leq D\|P\|(b-a) \quad \text{where } \|P\| = \max_{1 \leq i \leq n} |x_i - x_{i-1}| \]

5) Let \(\{f_n : [0, 1] \to \mathbb{R}\}_{n \in \mathbb{N}} \) be a sequence of continuous functions that obey \(|f_n(y)| \leq 1 \) for all \(n \in \mathbb{N} \) and all \(y \in [0, 1] \). Let \(T : [0, 1] \times [0, 1] \to \mathbb{R} \) be continuous and define, for each \(n \in \mathbb{N} \),

\[g_n(x) = \int_{0}^{1} T(x, y) f_n(y) \, dy \]

Prove that the sequence \(\{g_n\}_{n \in \mathbb{N}} \) has a uniformly convergent subsequence.

6) (a) Let \(H = \{ (x, y) \in \mathbb{R}^2 \mid x \geq 0, y \geq 0, x^2 + y^2 \leq 1 \} \). Prove that for any \(\varepsilon > 0 \) and any continuous function \(f : H \to \mathbb{R} \) there exists a function \(g(x, y) \) of the form

\[g(x, y) = \sum_{m=0}^{N} \sum_{n=0}^{N} a_{m,n} x^{2m} y^{2n} \quad N \in \mathbb{Z}, \ N \geq 0, \ a_{m,n} \in \mathbb{R} \]

such that

\[\sup_{(x,y) \in H} |f(x,y) - g(x,y)| < \varepsilon \]

(b) Does the result in (a) hold if \(H \) is replaced by the disk \(\{ (x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1 \} \)?

7) The Legendre polynomials \(P_n(x) : [-1, 1] \to \mathbb{R}, \ n \in \mathbb{Z}, \ n \geq 0 \), are polynomials obeying

(i) \(P_n \) is of degree \(n \) with the coefficient of \(x^n \) strictly greater than zero and

(ii) \(\int_{-1}^{1} P_n(x)P_m(x) \, dx = \begin{cases} 0 & \text{if } n \neq m \\ \frac{2}{2n+1} & \text{if } n = m \end{cases} \)

Let \(f : [-1, 1] \to \mathbb{R} \) be continuous and set \(a_n = \frac{2n+1}{2} \int_{-1}^{1} f(x)P_n(x) \, dx \). Prove that

(a) \(\sum_{n=0}^{\infty} \frac{2}{2n+1} |a_n|^2 \leq \int_{-1}^{1} f(x)^2 \, dx \) with equality if and only if \(\sum_{n=0}^{N} a_n P_n(x) \) converges to \(f \) in the mean as \(N \to \infty \).

(b) \(\sum_{n=0}^{\infty} a_n P_n(x) \) converges in the mean to \(f(x) \).