1. Find the velocity, speed and acceleration at time \(t \) of the particle whose position is
\[
r(t) = a \cos t \hat{i} + a \sin t \hat{j} + ct \hat{k}
\]

Describe the path of the particle.

Solution.
\[
r(t) = a \cos t \hat{i} + a \sin t \hat{j} + ct \hat{k}
\]
\[
v(t) = r'(t) = -a \sin t \hat{i} + a \cos t \hat{j} + c \hat{k}
\]
\[
\frac{ds}{dt}(t) = |r'(t)| = \sqrt{a^2 + c^2}
\]
\[
a(t) = r''(t) = -a \cos t \hat{i} - a \sin t \hat{j}
\]

As \(t \) runs over an interval of length \(2\pi \), \((x, y)\) traces out a circle of radius \(a \) and \(z \) increases by \(2\pi c \). The path is a helix with radius \(a \) and with each turn having height \(2\pi c \).

2. A projectile falling under the influence of gravity and slowed by air resistance proportional to its speed has position satisfying
\[
\frac{d^2 r}{dt^2} = -g \hat{k} - \alpha \frac{dr}{dt}
\]
where \(\alpha \) is a positive constant. If \(r = r_0 \) and \(\frac{dr}{dt} = v_0 \) at time \(t = 0 \), find \(r(t) \). (Hint: Define \(u(t) = e^{\alpha t} \frac{dr}{dt}(t) \) and substitute \(\frac{dr}{dt}(t) = e^{-\alpha t} u(t) \) into the given differential equation to find a differential equation for \(u \).)

Solution. Define \(u(t) = e^{\alpha t} \frac{dr}{dt}(t) \). Then
\[
\frac{du}{dt}(t) = \alpha e^{\alpha t} \frac{dr}{dt}(t) + e^{\alpha t} \frac{d^2 r}{dt^2}(t)
\]
\[
= \alpha e^{\alpha t} \frac{dr}{dt}(t) - ge^{\alpha t} \hat{k} - \alpha e^{\alpha t} \frac{dr}{dt}(t)
\]
\[
= -ge^{\alpha t} \hat{k}
\]

Integrating both sides of this equation from \(t = 0 \) to \(t = T \) gives
\[
u(T) - u(0) = -g \frac{e^{\alpha T} - 1}{\alpha} \hat{k} \Rightarrow u(T) = u(0) - g \frac{e^{\alpha T} - 1}{\alpha} \hat{k} = \frac{dr}{dt}(0) - g \frac{e^{\alpha T} - 1}{\alpha} \hat{k} = v_0 - g \frac{e^{\alpha T} - 1}{\alpha} \hat{k}
\]

Subbing in \(u(T) = e^{\alpha t} \frac{dr}{dt}(T) \) and multiplying through by \(e^{-\alpha T} \)
\[
\frac{dr}{dt}(T) = e^{-\alpha T} v_0 - g \frac{1 - e^{-\alpha T}}{\alpha} \hat{k}
\]

Integrating both sides of this equation from \(T = 0 \) to \(T = t \) gives
\[
r(t) - r(0) = \frac{e^{-\alpha t} - 1}{-\alpha} v_0 - g \frac{t}{\alpha} \hat{k} + g \frac{e^{-\alpha t} - 1}{-\alpha^2} \hat{k}
\]

\[
\Rightarrow r(t) = r_0 + \frac{e^{-\alpha t} - 1}{\alpha} v_0 + g \frac{1 - \alpha t - e^{-\alpha t}}{\alpha^2} \hat{k}
\]
3. Find the specified parametrization of the first quadrant part of the circle \(x^2 + y^2 = a^2 \).

 (a) In terms of the \(y \) coordinate.

 (b) In terms of the angle between the tangent line and the positive \(x \)-axis.

 (c) In terms of the arc length from \((0, a)\).

Solution.

(a) Since \(y = \sqrt{a^2 - x^2} \), the parametrization is
\[
(x(t), y(t)) = \left(\sqrt{a^2 - t^2}, t \right), \ 0 \leq t \leq a
\]

(b) Let \(\theta \) be the angle between the radius vector \((a \cos \theta, a \sin \theta)\) and the positive \(x \)-axis. The tangent line to the circle at \((a \cos \theta, a \sin \theta)\) is perpendicular to the radius vector and so makes angle \(\phi = \frac{\pi}{2} + \theta \) with the positive \(x \) axis. (See the figure on the left below.) As \(\theta = \phi - \frac{\pi}{2} \), the desired parametrization is
\[
(x(\phi), y(\phi)) = (a \cos(\phi - \frac{\pi}{2}), a \sin(\phi - \frac{\pi}{2})) = (a \sin \phi, -a \cos \phi), \ \frac{\pi}{2} \leq \phi \leq \pi
\]

(c) Let \(\theta \) be the angle between the radius vector \((a \cos \theta, a \sin \theta)\) and the positive \(x \)-axis. The arc from \((0, a)\) to \((a \cos \theta, a \sin \theta)\) subtends an angle \(\frac{\pi}{2} - \theta \) and so has length \(s = a(\frac{\pi}{2} - \theta) \). (See the figure on the right above.) Thus \(\theta = \frac{\pi}{2} - \frac{s}{a} \) and the desired parametrization is
\[
(x(s), y(s)) = (a \cos(\frac{\pi}{2} - \frac{s}{a}), a \sin(\frac{\pi}{2} - \frac{s}{a})), \ 0 \leq s \leq \frac{\pi}{2} a
\]

4. Find the length of the parametric curve
\[
x = a \cos t \sin t \quad y = a \sin^2 t \quad z = bt
\]

between \(t = 0 \) and \(t = T > 0 \).

Solution.

\[
x'(t) = a \left[\cos^2 t - \sin^2 t \right] = a \cos 2t
\]
\[
y'(t) = 2a \sin t \cos t = a \sin 2t
\]
\[
z'(t) = b
\]

So
\[
\frac{dx}{dt}(t) = \sqrt{x'(t)^2 + y'(t)^2 + z'(t)^2} = \sqrt{a^2 + b^2} \quad \Rightarrow \quad \text{length} = \sqrt{a^2 + b^2} \cdot T
\]
5. Reparametrize the curve

\[\mathbf{r}(t) = a \cos^3 t \mathbf{i} + a \sin^3 t \mathbf{j} + b \cos 2t \mathbf{k}, \quad 0 \leq t \leq \frac{\pi}{2} \]

with the same orientation, in terms of arc length measured from the point where \(t = 0 \). You may use the formulae

\[\sin(2t) = 2 \sin t \cos t \quad 1 - \cos(2t) = 2 \sin^2(t) \]

to simplify the computations.

Solution.

\[\mathbf{v}(t) = \mathbf{r}'(t) = (-3a \cos^2 t \sin t, 3a \sin^2 t \cos t, -2b \sin 2t) \]
\[\Rightarrow \quad \frac{ds}{dt} = |\mathbf{v}(t)| = \left[9a^2 \cos^4 t \sin^2 t + 9a^2 \sin^4 t \cos^2 t + 4b^2 \sin^2 2t \right]^{1/2} \]
\[= \left[9a^2 \sin^2 t \cos^2 t + 4b^2 \sin^2 2t \right]^{1/2} \]
\[= \left[\frac{9}{4}a^2 + 4b^2 \right]^{1/2} |\sin 2t| = \left[\frac{9}{4}a^2 + 4b^2 \right]^{1/2} \sin 2t \text{ for } 0 \leq t \leq \frac{\pi}{2} \]

Integrating (and recalling that \(s = 0 \) corresponds to \(t = 0 \))

\[s(t) = \left[\frac{9}{4}a^2 + 4b^2 \right]^{1/2} \frac{1 - \cos 2t}{2} = \left[\frac{9}{4}a^2 + 4b^2 \right]^{1/2} \sin^2 t \]

Setting \(K = \left[\frac{9}{4}a^2 + 4b^2 \right]^{1/2} \), we have \(\sin t = \frac{\sqrt{K}}{\sqrt{K}} \), \(\cos t = \sqrt{1 - \frac{K}{K}} \), \(\cos 2t = 1 - 2\sin^2 t = 1 - \frac{2K}{K} \) and hence

\[\mathbf{r}(s) = a \left[1 - \frac{K}{\sqrt{K}} \right]^{3/2} \mathbf{i} + a \left[\frac{K}{\sqrt{K}} \right]^{3/2} \mathbf{j} + b \left[1 - \frac{2K}{\sqrt{K}} \right] \mathbf{k}, \quad 0 \leq s \leq K, \text{ where } K = \left[\frac{9}{4}a^2 + 4b^2 \right]^{1/2} \]

6. The plane \(z = 2x + 3y \) intersects the cylinder \(x^2 + y^2 = 9 \) in an ellipse. Find a parametrization of the ellipse. Express the circumference of this ellipse as an integral. You need not evaluate the integral.

Solution. We can parametrize the circle \(x^2 + y^2 = 9 \) as \(x(\theta) = 3 \cos \theta, \quad y(\theta) = 3 \sin \theta \) with \(\theta \) running from 0 to \(2\pi \). As \(z = 2x + 3y \), the ellipse can be parametrized by

\[x(\theta) = 3 \cos \theta, \quad y(\theta) = 3 \sin \theta, \quad z(\theta) = 6 \cos \theta + 9 \sin \theta, \quad 0 \leq \theta \leq 2\pi \]

As

\[\frac{ds}{d\theta} = \sqrt{x'(\theta)^2 + y'(\theta)^2 + z'(\theta)^2} \]
\[= \sqrt{9 \sin^2 \theta + 9 \cos^2 \theta + 36 \sin^2 \theta + 81 \cos^2 \theta - 108 \sin \theta \cos \theta} \]
\[= \sqrt{45 + 45 \cos^2 \theta - 108 \sin \theta \cos \theta} \]

The circumference is

\[s = \int_0^{2\pi} \sqrt{45 + 45 \cos^2 \theta - 108 \sin \theta \cos \theta} \, d\theta \]

7. A wire of total length 1000 cm is formed into a flexible coil that is a circular helix. If there are 10 turns to each centimeter of height and the radius of the helix is 3 cm, how tall is the coil?

Solution. The parametrized equation of a helix is

\[\mathbf{r}(\theta) = a \cos \theta \mathbf{i} + a \sin \theta \mathbf{j} + b \theta \mathbf{k} \]
The radius of the helix is 3 cm, so $a = 3$ cm. After 10 turns (i.e. $\theta = 20\pi$) the height is 1 cm, so $b = \frac{1}{20\pi}$ cm/rad. Thus $\mathbf{r}(\theta) = 3\cos \theta \mathbf{i} + 3\sin \theta \mathbf{j} + \frac{1}{20\pi} \theta \mathbf{k}$ and $\mathbf{r}'(\theta) = -3\sin \theta \mathbf{i} + 3\cos \theta \mathbf{j} + \frac{1}{20\pi} \mathbf{k}$ so that $rac{ds}{d\theta} = |\mathbf{r}'(\theta)| = \sqrt{9 + \frac{1}{400\pi^2}}$. If θ varies from $\theta = 0$ to $\theta = \theta_F$, then the wire has length $\sqrt{9 + \frac{1}{400\pi^2}} \theta_F$. This must be 1000 cm. So $\theta_F = 1000\left[9 + \frac{1}{400\pi^2}\right]^{-1/2}$. This corresponds to a height $b \theta_F = \frac{1}{20\pi}1000\left[9 + \frac{1}{400\pi^2}\right]^{-1/2} \approx 5.3$ cm.

8. You are lost in a desert during the night. There is a road as indicated in the figure on the next page. Your position is (100, 190). A car is approaching from the left with headlights that have range 70m. Will the driver be able to see you?

Solution. In order for the driver to see you when the car is at the point (x_0, y_0) on the road, two conditions have to be satisfied.

- (x_0, y_0) has to be within a distance of 70m from (100, 190). That is, (x_0, y_0) must be inside the circle of radius 70m centred on (100, 190). That is the circle in the figure on the next page.
- The headlights have to be pointing in the correct direction. The headlights are pointing in the direction of the tangent to the curve at (x_0, y_0), so the tangent line to the curve at (x_0, y_0) must pass through (100, 190).

Now look at the figure on the next page. The second condition forces (x_0, y_0) to be near $(0, 0)$. Because the distance from $(0, 0)$ to (100, 190) is much greater than 70m, the driver will not be able to see you.