1. Find the curvature of the plane curve \(y = e^x \).

2. Find the minimum and maximum values for the curvature of the ellipse

\[
x(t) = a \cos t, \quad y(t) = b \sin t
\]

Here \(a > b > 0 \).

3. Recall that a point with polar coordinates \(r \) and \(\theta \) has \(x = r \cos \theta \) and \(y = r \sin \theta \). Let \(r = f(\theta) \) be the equation of a plane curve in polar coordinates. Find the curvature of this curve at a general point \(\theta \).

4. Find the curvature of the cardioid \(r = a(1 - \cos \theta) \).

5. Find the unit tangent, unit normal and binormal vectors and the curvature and torsion of the curve

\[
r(t) = t \hat{i} + \frac{t^2}{2} \hat{j} + \frac{t^3}{3} \hat{k}
\]

6. Consider a curve that is parametrized by arc length \(s \).
 (a) Show that if the curve has curvature \(\kappa(s) = 0 \) for all \(s \), then the curve is a straight line.
 (b) Show that if the curve has curvature \(\kappa(s) > 0 \) and torsion \(\tau(s) = 0 \) for all \(s \), then the curve lies in a plane.
 (c) Show that if the curve has curvature \(\kappa(s) = \kappa_0 \), a strictly positive constant, and torsion \(\tau(s) = 0 \) for all \(s \), then the curve is a circle.

7. Suppose that the curve \(C \) is the intersection of the cylinder \(x^2 + y^2 = 1 \) with the surface \(z = x^2 - y^2 \).
 (a) Find a parameterization of \(C \).
 (b) Determine the curvature of \(C \) at the point \((1/\sqrt{2}, 1/\sqrt{2}, 0) \).
 (c) Find the osculating plane to \(C \) at the point \((1/\sqrt{2}, 1/\sqrt{2}, 0) \). In general, the osculating plane to a curve \(r(t) \) at the point \(r(t_0) \) is the plane which fits the curve best at \(r(t_0) \). It passes through \(r(t_0) \) and has normal vector \(\mathbf{B}(t_0) \).
 (d) Find the radius and the centre of the osculating circle to \(C \) at the point \((1/\sqrt{2}, 1/\sqrt{2}, 0) \).

8. In this exercise, we make more precise the sense in which the osculating circle is the circle which best approximates a plane curve at a point.
 ○ By translating and rotating our coordinate system, we can always arrange that the point is \((0,0) \) and that the curve is \(y = f(x) \) with \(f'(0) = 0 \) and \(f''(0) > 0 \). (We are assuming that the curvature at the point is nonzero.)
 ○ Let \(y = g(x) \) be the bottom half of the circle of radius \(r \) which is centred at \((0, r) \).
 Show that if \(f(x) \) and \(g(x) \) have the same second order Taylor approximation at \(x = 0 \), then \(r \) is the radius of curvature of \(y = f(x) \) at \(x = 0 \).
9. (Optional — not to be handed in) A frictionless roller–coaster track has the form of one turn of the circular helix with parametrization \((a \cos \theta, a \sin \theta, b \theta)\). A car leaves the point where \(\theta = 2\pi\) with zero velocity and moves under gravity to the point where \(\theta = 0\). By Newton’s law of motion, the position \(\mathbf{r}(t)\) of the car at time \(t\) obeys

\[m\mathbf{r}''(t) = \mathbf{N}(\mathbf{r}(t)) - mg\mathbf{k} \]

Here \(m\) is the mass of the car, \(g\) is a constant, \(-mg\mathbf{k}\) is the force due to gravity and \(\mathbf{N}(\mathbf{r}(t))\) is the force that the roller–coaster track applies to the car to keep the car on the track. Since the track is frictionless, \(\mathbf{N}(\mathbf{r}(t))\) is always perpendicular to \(\mathbf{v}(t) = \frac{d\mathbf{r}}{dt}(t)\).

(a) Prove that \(E(t) = \frac{1}{2}m|\mathbf{v}(t)|^2 + mg\mathbf{r}(t) \cdot \mathbf{k}\) is a constant, independent of \(t\). (This is called “conservation of energy”.)

(b) Prove that the speed \(|\mathbf{v}|\) at the point \(\theta\) obeys \(|\mathbf{v}|^2 = 2gb(2\pi - \theta)\).

(c) Find the time it takes to reach \(\theta = 0\).