1. (a) Find the curvature of $y = e^x$ at $(0, 1)$.
(b) Find the equation of the circle best fitting $y = e^x$ at $(0, 1)$.

Solution. Parametrize the curve by $r(t) = t\hat{i} + e^t\hat{j}$. Then

$v(t) = \hat{i} + e^t\hat{j}$ \hspace{1cm} $v(0) = \hat{i} + \hat{j}$ \hspace{1cm} $\frac{dv}{dt}(0) = \sqrt{2}$ \hspace{1cm} $\hat{T}(0) = \frac{v(0)}{|v(0)|} = \frac{\hat{i} + \hat{j}}{\sqrt{2}}$

$a(t) = e^t\hat{j}$ \hspace{1cm} $a(0) = \hat{j}$

(a) Since

$v(0) \times a(0) = \hat{k} = \kappa(0) \left(\frac{dv}{dt}(0)\right)^3 \hat{B} = \kappa(0) 2^{3/2} \hat{B}$

we have $\kappa(0) = 2^{-3/2}$ and $\hat{B} = \hat{k}$.

(b) We have

$\hat{N}(0) = \hat{B}(0) \times \hat{T}(0) = \frac{1}{\sqrt{2}} \hat{k} \times (\hat{i} + \hat{j}) = \frac{1}{\sqrt{2}} (\hat{i} - \hat{j})$

so that the radius of curvature is $\frac{1}{\kappa(0)} = 2^{3/2}$ and centre of curvature is

$(0, 1) + \frac{1}{\kappa(0)} \hat{N}(0) = (0, 1) + 2^{3/2} 2^{-1/2} (-1, 1) = (-2, 3)$

and the equation of the osculating circle is $\left(x + 2 \right)^2 + \left(y - 3 \right)^2 = 8$.

2. The surface $z = x^2 + y^2$ is sliced by the plane $x = y$. The resulting curve is oriented from $(0, 0, 0)$ to $(1, 1, 2)$.
(a) Sketch the curve from $(0, 0, 0)$ to $(1, 1, 2)$.
(b) Sketch \hat{T}, \hat{N} and \hat{B} at $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$.
(c) Find the torsion at $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$.

Solution. (a), (b)
3. (a) For which value(s) of the constants a, b is the vector field

$$\mathbf{F} = (2x \sin(\pi y) - e^z)\hat{i} + (ax^2 \cos(\pi y) - 3e^z)\hat{j} - (x + by)e^z\hat{k}$$

conservative?

(b) Let \mathbf{F} be a conservative field from part (a). Find all functions ϕ for which $\mathbf{F} = \nabla \phi$.

(c) Let \mathbf{F} be a conservative field from part (a). Evaluate $\oint_C \mathbf{F} \cdot d\mathbf{r}$ where C is the intersection of $y = x$ and $z = \ln(1 + x)$ from $(0, 0, 0)$ to $(1, 1, \ln 2)$.

(d) Evaluate $\oint_C \mathbf{G} \cdot d\mathbf{r}$ where

$$\mathbf{G} = (2x \sin(\pi y) - e^z)\hat{i} + (\pi x^2 \cos(\pi y) - 3e^z)\hat{j} - xe^z\hat{k}$$

and C is the intersection of $y = x$ and $z = \ln(1 + x)$ from $(0, 0, 0)$ to $(1, 1, \ln 2)$.

Solution. (a) The field is conservative only if

$$\frac{\partial F_y}{\partial y} = \frac{\partial F_x}{\partial x}, \quad \frac{\partial F_z}{\partial z} = \frac{\partial F_y}{\partial y}$$

That is,

$$\frac{\partial}{\partial y} (2x \sin(\pi y) - e^z) = \frac{\partial}{\partial x} (ax^2 \cos(\pi y) - 3e^z) \iff 2\pi x \cos(\pi y) = 2ax \cos(\pi y)$$

$$\frac{\partial}{\partial x} (2x \sin(\pi y) - e^z) = -\frac{\partial}{\partial x} (x + by) e^z \iff -e^z = -e^z$$

$$\frac{\partial}{\partial z} (ax^2 \cos(\pi y) - 3e^z) = -\frac{\partial}{\partial y} (x + by) e^z \iff -3e^z = -3e^z$$

Hence only $a = \pi, \ b = 3$ works.

(b) When $a = \pi, \ b = 3$

$$\mathbf{F} = (2x \sin(\pi y) - e^z)\hat{i} + (\pi x^2 \cos(\pi y) - 3e^z)\hat{j} - (x + 3y)e^z\hat{k}$$

$$= \nabla (x^2 \sin(\pi y) - xe^z - 3ye^z + C)$$

so $\phi(x, y, z) = x^2 \sin(\pi y) - xe^z - 3ye^z + C$ for any constant C. Here ϕ was guessed. Alternatively, it can be found by solving

$$\frac{\partial \phi}{\partial x}(x, y, z) = 2x \sin(\pi y) - e^z$$

$$\frac{\partial \phi}{\partial y}(x, y, z) = \pi x^2 \cos(\pi y) - 3e^z$$

$$\frac{\partial \phi}{\partial z}(x, y, z) = -(x + 3y)e^z$$

Integrating the first of these equations gives

$$\phi(x, y, z) = x^2 \sin(\pi y) - xe^z + g(y, z)$$

Substituting this into the second equation gives

$$\pi x^2 \cos(\pi y) + \frac{\partial g}{\partial y}(y, z) = \pi x^2 \cos(\pi y) - 3e^z \quad \text{or} \quad \frac{\partial g}{\partial y}(y, z) = -3e^z$$

which forces

$$g(y, z) = -3ye^z + h(z)$$

Finally, substituting $\phi(x, y, z) = x^2 \sin(\pi y) - xe^z - 3ye^z + h(z)$ into the last equation gives

$$-xe^z - 3ye^z + h'(z) = -(x + 3y)e^z \quad \text{or} \quad h'(z) = 0$$

So $h(x) = C$ and hence $\phi(x, y, z) = x^2 \sin(\pi y) - xe^z - 3ye^z + C$ for any constant C.

(c) By part (b),
\[\int_C \mathbf{F} \cdot d\mathbf{r} = \phi(1, 1, \ln 2) - \phi(0, 0, 0) = 8 \]

(d) Observe that \(\mathbf{G} = \mathbf{F} + 3ye^z \hat{k} \), with \(\mathbf{F} \) evaluated with \(a = \pi, \ b = 3 \). Hence
\[\int_C \mathbf{G} \cdot d\mathbf{r} = \int_C \mathbf{F} \cdot d\mathbf{r} + \int_C 3ye^z \hat{k} \cdot d\mathbf{r} = -8 + \int_C 3ye^z \hat{k} \cdot d\mathbf{r} \]
To evaluate the remaining integral, parametrize the curve by \(\mathbf{r}(t) = t\mathbf{i} + ty + \ln(1 + t)\hat{k} \) with \(0 \leq t \leq 1 \). Then \(\mathbf{r}'(t) = \mathbf{i} + \frac{t}{1 + t^2} \hat{k} \) and \(3ye^z = 3t(1 + t)\hat{k} \) so that \(3ye^z \hat{k} \cdot d\mathbf{r} = 3t \, dt \). Subbing in
\[\int_C \mathbf{G} \cdot d\mathbf{r} = -8 + \int_0^1 3t \, dt = -8 + \frac{3}{2} = \frac{-13}{2} \]

4. Let the thin shell \(S \) consist of the part of the surface \(z^2 = 2xy \) with \(x \geq 1, \ y \geq 1 \) and \(0 \leq z \leq 2 \). Find the mass of \(S \) if it has surface density given by \(\rho(x, y, z) = 3z \) kg per unit area.

Solution. The surface is \(z = f(x, y) \) with \(f(x, y) = \sqrt{2xy} \). Since \(f_x = \frac{\sqrt{2}}{2x} \) and \(f_y = \frac{\sqrt{2}}{2y} \),
\[dS = \sqrt{1 + f_x^2 + f_y^2} \, dx \, dy = \sqrt{1 + \frac{2}{2x} + \frac{2}{2y}} \, dx \, dy \]
The domain of integration is
\[\{ (x, y) \mid x \geq 1, \ y \geq 1, \ 2xy = z^2 \leq 4 \} = \{ (x, y) \mid x \geq 1, \ y \geq 1, \ xy \leq 2 \} \]
\[= \{ (x, y) \mid 1 \leq x \leq 2, \ 1 \leq y \leq \frac{2}{x} \} \]

So the mass is
\[\iint_S \rho(x, y, z) \, dS = \int_1^2 dx \int_1^{2/x} \left[f(x, y) \sqrt{1 + \frac{y}{2x} + \frac{x}{2y}} \right] \, dy = \int_1^2 dx \int_1^{2/x} \left[\sqrt{2xy} \sqrt{1 + \frac{y}{2x} + \frac{x}{2y}} \right] \, dy \]
\[= \int_1^2 dx \int_1^{2/x} \left[\sqrt{2xy(y^2 + x^2)} \right] \, dy \]
\[= \int_1^2 dx \left[xy + \frac{1}{2} y^2 \right]_{y=1}^{y=2/x} = 3 \int_1^2 dx \left[2 + \frac{2}{2x} - x - \frac{1}{2} \right] = 3 \left[\frac{3}{2} - \frac{2}{2} + \frac{2}{2} - 2 + \frac{1}{2} \right] = 3 \text{ kg} \]

5. Let \(\mathbf{F} = (x^2 + y^2 + z^2)\mathbf{i} + (e^{x^2 + y^2})\mathbf{j} + (3 + x + z)\hat{k} \) and let \(S \) be the part of the surface \(x^2 + y^2 + z^2 = 2az + 3a^2 \) having \(z \geq 0 \), oriented with normal pointing away from the origin. Here \(a > 0 \) is a constant. Compute the flux of \(\mathbf{F} \) through \(S \).
Solution. Note that, since \(z^2 - 2az = (z - a)^2 - a^2 \),

\[
S = \left\{ (x, y, z) \mid x^2 + y^2 + (z - a)^2 = 4a^2, \ z \geq 0 \right\}
\]

Let \(V \) be the solid

\[
V = \left\{ (x, y, z) \mid x^2 + y^2 + (z - a)^2 \leq 4a^2, \ z \geq 0 \right\}
\]

Then the surface of \(V \) (with outward normal) is the union of \(S \) (with normal pointing away from the origin) and the disk

\[
B = \left\{ (x, y, 0) \mid x^2 + y^2 \leq 3a^2 \right\}
\]

with normal \(-\hat{k}\). Hence, by the Divergence Theorem

\[
\iiint_S F \cdot \hat{n} \, dS = \iiint_V \nabla \cdot F \, dV - \iiint_B F \cdot (\hat{k}) \, dS
\]

Both \(V \) and \(B \) are invariant under \(x \to -x \) and under \(y \to -y \), so \(\iiint_V x \, dV = \iiint_V y \, dV = \iiint_B x \, dS = 0 \) and

\[
\iiint_S F \cdot \hat{n} \, dS = \iiint_V \, dV + 3 \iiint_B \, dS
\]

To evaluate the integral over \(V \), we note that \(z \) runs from 0 to \(3a \) and that the cross section of \(V \) with fixed \(z \) is the circular disk \(x^2 + y^2 \leq 4a^2 - (z - a)^2 = 3a^2 - 2az - z^2 \), which has area \(\pi \left(\sqrt{3a^2 + 2az - z^2} \right)^2 \).

So

\[
\iiint_S F \cdot \hat{n} \, dS = \int_0^{3a} \pi \left(\sqrt{3a^2 + 2az - z^2} \right)^2 \, dz + 3 \text{Area}(B)
\]

\[
= \pi \int_0^{3a} (3a^2 + 2az - z^2) \, dz + 3\pi(3a^2)
\]

\[
= \pi \left(3a^2 \times 3a + 2a \times 2a^2 - \frac{27a^3}{3} + 9\pi a^2 \right) = 9\pi a^3 + 9\pi a^2
\]

6. Let \(C \) be the counterclockwise boundary of the rectangle with vertices \((1, 0), (3, 0), (3, 1)\) and \((1, 1)\). Evaluate

\[
\oint_C (3y^2 + 2xe^{y^2}) \, dx + (2yxe^{y^2}) \, dy
\]

Solution. Let’s use Green’s theorem. The rectangle, which we shall denote \(R \), is

\[
R = \left\{ (x, y) \mid 1 \leq x \leq 3, \ 0 \leq y \leq 1 \right\}
\]

So Green’s theorem gives

\[
\oint_C (3y^2 + 2xe^{y^2}) \, dx + (2yxe^{y^2}) \, dy = \iint_R \left[\frac{\partial}{\partial x} (2yxe^{y^2}) - \frac{\partial}{\partial y} (3y^2 + 2xe^{y^2}) \right] \, dxdy
\]

\[
= \iint_R \left[4xye^{y^2} - 6y - 4yxe^{y^2} \right] \, dxdy
\]

\[
= -6 \int_1^3 \, dx \int_0^1 \, dy \ y = -6 \int_1^3 \, dx \ \frac{1}{2}
\]

\[
= -6
\]
7. Let S be the part of the half cone
\[z = \sqrt{x^2 + y^2}, \quad y \geq 0, \]
that lies below the plane $z = 1$.
(a) Find a parametrization for S.
(b) Calculate the flux of the velocity field
\[\mathbf{v} = x \mathbf{i} + y \mathbf{j} - 2z \mathbf{k} \]
downward through S.
(c) A vector field \mathbf{F} has curl $\nabla \times \mathbf{F} = x \mathbf{i} + y \mathbf{j} - 2z \mathbf{k}$. On the xz-plane, the vector field \mathbf{F} is constant with $\mathbf{F}(x, 0, z) = \mathbf{j}$. Given this information, calculate
\[\int_C \mathbf{F} \cdot d\mathbf{r}, \]
where C is the half circle \(x^2 + y^2 = 1, \ z = 1, \ y \geq 0\) oriented from $(-1, 0, 1)$ to $(1, 0, 1)$.

Solution. (a) We parametrize S in cylindrical coordinates:
\[\mathbf{r}(r, \theta) = r \cos \theta \mathbf{i} + r \sin \theta \mathbf{j} + r \mathbf{k} \quad \text{with} \quad 0 \leq r \leq 1, \ 0 \leq \theta \leq \pi \]
(b) We compute
\[\frac{\partial \mathbf{r}}{\partial r} = \cos \theta \mathbf{i} + \sin \theta \mathbf{j} + \mathbf{k} \]
\[\frac{\partial \mathbf{r}}{\partial \theta} = -r \sin \theta \mathbf{i} + r \cos \theta \mathbf{j} \]
\[\hat{n} dS = \pm \frac{\partial \mathbf{r}}{\partial r} \times \frac{\partial \mathbf{r}}{\partial \theta} \, dr \, d\theta = \pm \left(-r \cos \theta \mathbf{i} - r \sin \theta \mathbf{j} + r \mathbf{k} \right) \, dr \, d\theta \]
To calculate the downward flux, we use the minus sign. We find
\[
\int_S \mathbf{v} \cdot \hat{n} \, dS = \int_0^\pi d\theta \int_0^1 dr \ (r \cos \theta, r \sin \theta, -2r) \cdot (r \cos \theta, r \sin \theta, -r)
\]
\[
= \int_0^\pi d\theta \int_0^1 dr \ 3r^2 = \pi r^3 \bigg|_{r=0}^1 = \pi
\]
(c) **Solution 1:** Let P be the path along line segments from $(1, 0, 1)$ to $(0, 0, 0)$ and from $(0, 0, 0)$ to $(-1, 0, 1)$. Here is a sketch. P is in blue.
Then
\[\int_{C} \mathbf{F} \cdot d\mathbf{r} + \int_{P} \mathbf{F} \cdot d\mathbf{r} = \iint_{S} \nabla \times \mathbf{F} \cdot \hat{n} dS \]
by Stokes' Theorem. Along \(P \), the vector field \(\mathbf{F} \) is orthogonal to the curve so that \(\int_{P} \mathbf{F} \cdot d\mathbf{r} = 0 \). Note that \(\nabla \times \mathbf{F} \) is the vector field \(\mathbf{v} \) from part (b). Thus
\[\int_{C} \mathbf{F} \cdot d\mathbf{r} = \iint_{S} \mathbf{v} \cdot \hat{n} dS = \pi \]

(c) **Solution 2:** Let \(\mathcal{L} \) be the line segment from \((1,0,1)\) to \((-1,0,1)\) and let
\[\mathcal{R} = \{ (x,y,z) | x^2 + y^2 \leq 1, y \geq 0, z = 1 \} \]
Here is a sketch. \(\mathcal{L} \) is in blue and \(\mathcal{R} \) is shaded.

Then
\[\int_{C} \mathbf{F} \cdot d\mathbf{r} + \int_{\mathcal{L}} \mathbf{F} \cdot d\mathbf{r} = \iint_{\mathcal{R}} \nabla \times \mathbf{F} \cdot (-\hat{k}) dS \]
by Stokes' Theorem. Along \(\mathcal{L} \), the vector field \(\mathbf{F} = \hat{j} \) is orthogonal to the curve (which has direction \(-\hat{i}\) so that \(\int_{\mathcal{L}} \mathbf{F} \cdot d\mathbf{r} = 0 \). Note that \(\nabla \times \mathbf{F} \) is the vector field \(\mathbf{v} \) from part (b). Thus
\[\int_{C} \mathbf{F} \cdot d\mathbf{r} = -\iint_{\mathcal{R}} \mathbf{v} \cdot \hat{k} dS = \iint_{\mathcal{R}} 2z dS = 2 \iint_{\mathcal{R}} dS = 2 \text{Area}(\mathcal{R}) = \pi \]

8. A region \(R \) is bounded by a simple closed curve \(C \). The curve \(C \) is oriented such that \(R \) lies to the left of \(C \) when walking along \(C \) in the direction of \(C \). Determine whether or not each of the following expressions is equal to the area of \(R \). You must justify your conclusions.
(a) \(\frac{1}{2} \int_{C} -y \, dx + x \, dy \)
(b) \(\frac{1}{2} \int_{C} -x \, dx + y \, dy \)
(c) \(\int_{C} y \, dx \)
(d) \(\int_{C} 3y \, dx + 4x \, dy \)
Solution. We apply Green’s Theorem:
\[\int_{C} F_{1} \, dx + F_{2} \, dy = \iint_{R} \left(\frac{\partial F_{2}}{\partial x} - \frac{\partial F_{1}}{\partial y} \right) \, dxdy \]

(a) \(\frac{1}{2} \int_{C} -y \, dx + x \, dy = \frac{1}{2} \iint_{R} \{1 - (-1)\} \, dx \, dy = \text{Area}(R) \)
(b) \(\frac{1}{2} \int_C -x \, dx + y \, dy = \frac{1}{2} \iint_R 0 \, dx \, dy = 0 \neq \text{Area}(R) \)

(c) \(\int_C y \, dx = \iint_R \{ -1 \} \, dx \, dy = -\text{Area}(R) \neq \text{Area}(R) \)

(d) \(\int_C 3y \, dx + 4x \, dy = \iint_R \{ 4 - 3 \} \, dx \, dy = \text{Area}(R) \)

9. Say whether each of the following statements is true or false and explain why.
(a) A moving particle has velocity and acceleration vectors that satisfy \(|v| = 1\) and \(|a| = 1\) at all times. Then the curvature of this particle’s path is a constant.

(b) If \(F \) is any smooth vector field defined in \(\mathbb{R}^3 \) and if \(S \) is any sphere, then
\[
\iint_S \nabla \times F \cdot \hat{n} \, dS = 0
\]
Here \(\hat{n} \) is the outward normal to \(S \).

(c) If \(F \) and \(G \) are smooth vector fields in \(\mathbb{R}^3 \) and if \(\oint_C F \cdot dr = \oint_C G \cdot dr \) for every circle \(C \), then \(F = G \).

Solution. (a) True. Since \(v = |v| = 1 \) is constant, we have
\[
a = \frac{dv}{dt} \mathbf{T} + v^2 \kappa \hat{N} = 0 \mathbf{T} + \kappa \hat{N}.
\]
Thus \(1 = |a| = \kappa |\hat{N}| \), i.e., \(\kappa = 1 \).

(b) True. By the divergence theorem, if \(V \) is the solid bounded by \(S \),
\[
\iint_S \nabla \times F \cdot \hat{n} \, dS = \iiint_V \nabla \cdot (\nabla \times F) \, dV = 0
\]
since \(\nabla \cdot (\nabla \times F) = 0 \).

(c) False. If \(F = 0 \) and \(G \) is any nonzero, conservative field, like \(G = 2x \hat{i} = \nabla(x^2) \), then
\[
\oint_C F \cdot dr = \oint_C G \cdot dr = 0
\]
for every closed curve \(C \).