MATHEMATICS 317 April 2003 Final Exam

1. Find the field line of the vector field $\mathbf{F}=2 y \hat{\boldsymbol{\imath}}+\frac{x}{y^{2}} \hat{\boldsymbol{j}}+e^{y} \hat{\mathbf{k}}$ that passes through $(1,1, e)$.
2. Let $\mathbf{F}=e^{x} \sin y \hat{\boldsymbol{\imath}}+\left[a e^{x} \cos y+b z\right] \hat{\boldsymbol{\jmath}}+c x \hat{\mathbf{k}}$. For which values of the constants a, b, c is $\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}=0$ for all closed paths C ?
3. Let $\mathbf{F}=\frac{x}{x^{2}+y^{2}} \hat{\boldsymbol{\imath}}+\frac{y}{x^{2}+y^{2}} \hat{\boldsymbol{\jmath}}+x^{3} \hat{\mathbf{k}}$. Let P be the path which starts at $(1,0,0)$, ends at $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{1}{2} \ln 2\right)$ and follows

$$
x^{2}+y^{2}=1 \quad x e^{z}=1
$$

Find the work done in moving a particle along P in the field \mathbf{F}.
4. Let the thin shell S consist of the part of the surface $z^{2}=2 x y$ with $x \geq 1, y \geq 1$ and $z \leq 2$. Find the mass of S if it has surface density given by $\rho(x, y, z)=3 z \mathrm{~kg}$ per unit area.
5. Let S be the portion of the paraboloid $x=y^{2}+z^{2}$ that satisfies $x \leq 2 y$. Its unit normal vector $\hat{\mathbf{n}}$ is so chosen that $\hat{\mathbf{n}} \cdot \hat{\boldsymbol{\imath}}>0$. Find the flux of $\mathbf{F}=2 \hat{\boldsymbol{\imath}}+z \hat{\boldsymbol{\jmath}}+y \hat{\mathbf{k}}$ out of S.
6. Let S be the portion of the hyperboloid $x^{2}+y^{2}-z^{2}=1$ between $z=-1$ and $z=1$. Find the flux of $\mathbf{F}=\left(x+e^{y z}\right) \hat{\boldsymbol{\imath}}+(2 y z+\sin (x z)) \hat{\boldsymbol{\jmath}}+\left(x y-z-z^{2}\right) \hat{\mathbf{k}}$ out of S (away from the origin).
7. Evaluate $\iint_{S} \boldsymbol{\nabla} \times \mathbf{F} \cdot \hat{\mathbf{n}} \mathrm{d} S$ where $\mathbf{F}=y \hat{\boldsymbol{\imath}}+2 z \hat{\boldsymbol{\jmath}}+3 x \hat{\mathbf{k}}$ and S is the surface $z=\sqrt{1-x^{2}-y^{2}}$, $z \geq 0$ and $\hat{\mathbf{n}}$ is a unit normal to S obeying $\hat{\mathbf{n}} \cdot \hat{\mathbf{k}} \geq 0$.
8. The following statements may be true or false. Decide which. If true, give a proof. If false, provide a counter-example.
(a) If f is any smooth function defined in \mathbb{R}^{3} and if C is any circle, then $\int_{C} \nabla f \cdot \mathrm{~d} \mathbf{r}=0$.
(b) There is a vector field \mathbf{F} that obeys $\boldsymbol{\nabla} \times \mathbf{F}=x \hat{\boldsymbol{\imath}}+y \hat{\boldsymbol{\jmath}}+z \hat{\mathbf{k}}$.

