MATHEMATICS 317 April 2002 Final Exam

1. Consider a particle travelling in space along the path parametrized by

$$
x=\cos ^{3} t, y=\sin ^{3} t, z=2 \sin ^{2} t
$$

(a) Calculate the arc length of this path for $0 \leq t \leq \pi / 2$.
(b) Find the Frenet frame $\hat{\mathbf{T}}, \hat{\mathbf{N}}, \hat{\mathbf{B}}$ for the particle at $t=\pi / 6$.
2. Short answers:
(a) Let S be the level surface $f(x, y, z)=0$. Why is $\int_{C} \nabla f \cdot \mathrm{~d} \mathbf{r}=0$ for any curve C on S ?
(b) A point moving in space with position $\mathbf{r}(t)$ at time t satisfies the condition $\mathbf{a}(t)=$ $f(t) \mathbf{r}(t)$ for all t for some real valued function f. Why is $\mathbf{v} \times \mathbf{r}$ a constant vector?
(c) Why is the trajectory of the point in (b) contained in a plane?
(d) Is the binormal vector, $\hat{\mathbf{B}}$, of a particle moving in space, always orthogonal to the unit tangent vector $\hat{\mathbf{T}}$ and unit normal $\hat{\mathbf{N}}$?
(e) If the curvature of the path of a particle moving in space is constant, is the acceleration zero when maximum speed occurs?
3. Find the area of the part of the surface $z=y^{3 / 2}$ that lies above the square $0 \leq x, y \leq 1$.
4. (a) For which values of the constants α, β and γ is the vector field

$$
\mathbf{F}(x, y, z)=\alpha e^{y} \hat{\boldsymbol{\imath}}+\left(x e^{y}+\beta \cos z\right) \hat{\boldsymbol{\jmath}}-\gamma y \sin z \hat{\mathbf{k}}
$$

conservative?
(b) For those values of α, β and γ found in part (a), calculate $\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}$, where C is the curve parametrized by $x=t^{2}, y=e^{t}, z=\pi t, 0 \leq t \leq 1$.
5. Use the divergence theorem to find the flux of $x \hat{\boldsymbol{\imath}}+y \hat{\boldsymbol{\jmath}}+2 z \hat{\mathbf{k}}$ through the part of the ellipsoid

$$
x^{2}+y^{2}+2 z^{2}=2
$$

with $z \geq 0$. [Note: the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ has volume $\frac{4}{3} \pi a b c$.]
6. Use Stokes' theorem to evaluate

$$
\oint_{C} z \mathrm{~d} x+x \mathrm{~d} y-y \mathrm{~d} z
$$

where C is the closed curve which is the intersection of the plane $x+y+z=1$ with the sphere $x^{2}+y^{2}+z^{2}=1$. Assume that C is oriented clockwise as viewed from the origin.
7. Let \mathbf{F} be the vector field $\mathbf{F}(x, y, z)=\left(x^{2}-y-1\right) \hat{\imath}+\left(e^{\cos y}+z^{3}\right) \hat{\boldsymbol{\jmath}}+\left(2 x z+z^{5}\right) \hat{\mathbf{k}}$. Evaluate $\iint_{S} \boldsymbol{\nabla} \times \mathbf{F} \cdot \hat{\mathbf{n}} \mathrm{d} S$ where S is the part of the ellipsoid $x^{2}+y^{2}+2 z^{2}=1$ with $z \geq 0$.
8. (Bonus Question) Let \mathbf{F} be a smooth 3-dimensional vector field such that the flux of \mathbf{F} out of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ is equal to $\pi\left(a^{3}+2 a^{4}\right)$ for every $a>0$. Calculate $\nabla \cdot \mathbf{F}(0,0,0)$.

