MATHEMATICS 317 December 2001 Final Exam

1. The position of a plane at time t is given by $x=y=\frac{4 \sqrt{2}}{3} t^{3 / 2}, z=t(2-t)$ from take-off at $t=0$ to landing at $t=2$.
(a) What is the total distance the plane travels on this flight?
(b) Find the radius of curvature κ at the apex of the flight, which occurs at $t=1$.
(c) Two external forces are applied to the plane during the flight: the force of gravity $\mathbf{G}=-M g \hat{\mathbf{k}}$, where M is the mass of the plane and g is a constant; and a friction force $\mathbf{F}=-|\mathbf{v}|^{2} \mathbf{v}$, where \mathbf{v} is the velocity of the plane. Find the work done by each of these forces during the flight.
(d) One half-hour later, a bird follows the exact same flight-path as the plane, travelling at a constant speed $v=3$. One can show that at the apex of the path, i.e. when the bird is at $\left(\frac{4 \sqrt{2}}{3}, \frac{4 \sqrt{2}}{3}, 1\right)$, the principal unit normal to the path points in the $-\hat{\mathbf{k}}$ direction. Find the bird's (vector) acceleration at that moment.
2. Let $\phi(x, y)=x y$ and let $\mathbf{F}=\nabla \phi$.
(a) Find an equation for the field line of \mathbf{F} which passes through the point $(3,2)$. Sketch it and verify that it also passes through $(3,-2)$.
(b) Find $\int_{(3,-2)}^{(3,2)} \mathbf{F} \cdot d \mathbf{r}$, where the line integral is along the field line of (a).
3. Let $\mathbf{F}(x, y)=(x+3 y) \hat{\boldsymbol{\imath}}+(x+y) \hat{\boldsymbol{\jmath}}$ and $\mathbf{G}(x, y)=(x+y) \hat{\boldsymbol{\imath}}+(2 x-3 y) \hat{\boldsymbol{\jmath}}$ be vector fields. Find a number A such that for each circle C in the plane

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=A \oint_{C} \mathbf{G} \cdot d \mathbf{r}
$$

4. Let $\mathbf{F}(x, y, z)=-z \hat{\boldsymbol{\imath}}+x \hat{\boldsymbol{\jmath}}+y \hat{\mathbf{k}}$ be a vector field. Use Stokes' theorem to evaluate the line integral $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$ where C is the intersection of the plane $z=y$ and the ellipsoid $\frac{x^{2}}{4}+\frac{y^{2}}{2}+\frac{z^{2}}{2}=1$.
5. Let S denote the portion of the paraboloid $z=1-\frac{1}{4} x^{2}-y^{2}$ for which $z \geq 0$. Orient S so that its unit normal has a positive \hat{k} component. Let

$$
\mathbf{F}(x, y, z)=\left(3 y^{2}+z\right) \hat{\boldsymbol{\imath}}+\left(x-x^{2}\right) \hat{\boldsymbol{\jmath}}+\hat{\mathbf{k}}
$$

Evaluate the surface integral $\iint_{S} \nabla \times \mathbf{F} \cdot \hat{\mathbf{n}} \mathrm{d} S$.
6. Let $\mathbf{F}(x, y)=\frac{y^{3}}{\left(x^{2}+y^{2}\right)^{2}} \hat{\imath}-\frac{x y^{2}}{\left(x^{2}+y^{2}\right)^{2}} \hat{\boldsymbol{\jmath}},(x, y) \neq(0,0)$.
(a) Compute $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$ where C is the unit circle in the $x y$-plane, positively oriented.
(b) Use (a) and Green's theorem to find $\oint_{C_{0}} \mathbf{F} \cdot d \mathbf{r}$ where C_{0} is the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{25}=1$, positively oriented.

