MATHEMATICS 317 December 2000 Final Exam

1. A skier descends the hill $z = \sqrt{4 - x^2 - y^2}$ along a trail with parameterization

 $x = \sin(2\theta),$ $y = 1 - \cos(2\theta),$ $z = 2\cos\theta,$ $0 \le \theta \le \frac{\pi}{2}$

Let P denote the point on the trail where x = 1.

- (a) Find Frenet frame $\mathbf{T}, \mathbf{N}, \mathbf{B}$ and the curvature κ of the ski trail at the point P.
- (b) The skier's acceleration at P is $\mathbf{a} = (-2, 3, -2\sqrt{2})$. Find, at P,
 - (i) the rate of change of the skier's speed and
 - (ii) the skier's velocity (a vector).
- 2. Consider the following force field, in which m, n, p, q are constants:

$$\mathbf{F} = (mxyz + z^2 - ny^2)\,\hat{\mathbf{i}} + (x^2z - 4xy)\,\hat{\mathbf{j}} + (x^2y + pxz + qz^3)\,\hat{\mathbf{k}}$$

- (a) Find all values of m, n, p, q such that $\oint \mathbf{F} \cdot d\mathbf{r} = 0$ for all piecewise smooth closed curves \mathcal{C} in \mathbb{R}^3 .
- (b) For every possible choice of m, n, p, q in (a), find the work done by \mathbf{F} in moving a particle from the bottom to the top of the sphere $x^2 + y^2 + z^2 = 2z$. (The direction of $\hat{\mathbf{k}}$ defines "up".)
- 3. Let a and b be positive constants, and let \mathcal{S} be the part of the conical surface

$$a^2 z^2 = b^2 (x^2 + y^2)$$

where $0 \le z \le b$. Consider the surface integral

$$I = \iint_{\mathcal{S}} (x^2 + y^2) \, \mathrm{d}S.$$

- (a) Express I as a double integral over a disk in the xy-plane.
- (b) Use the parametrization $x = t \cos \theta$, $y = t \sin \theta$, etc., to express I as a double integral over a suitable region in the $t\theta$ -plane.
- (c) Evaluate I using the method of your choice.
- 4. Let \mathcal{S} be the curved surface below, oriented by the outward normal:

$$x^{2} + y^{2} + 2(z - 1)^{2} = 6, \qquad z \ge 0.$$

(E.g., at the high point of the surface, the unit normal is \mathbf{k} .) Define

 $\mathbf{G} = \nabla \times \mathbf{F}, \qquad \text{where} \qquad \mathbf{F} = (xz - y^3 \cos z)\,\hat{\boldsymbol{\imath}} + x^3 e^z\,\hat{\boldsymbol{\jmath}} + xyz e^{x^2 + y^2 + z^2}\,\hat{\mathbf{k}}.$

Find $\iint_{\mathcal{S}} \mathbf{G} \cdot \hat{\mathbf{n}} dS$.

- 5. Let \mathcal{R} be the part of the solid cylinder $x^2 + (y-1)^2 \leq 1$ satisfying $0 \leq z \leq y^2$; let \mathcal{S} be the boundary of \mathcal{R} . Given $\mathbf{F} = x^2 \hat{\imath} + 2y \hat{\jmath} 2z \hat{k}$,
 - (a) Find the total flux of \mathbf{F} outward through \mathcal{S} .
 - (b) Find the total flux of **F** outward through the (vertical) cylindrical sides of S. Hint: $\int_0^{\pi} \sin^n \theta \, d\theta = \frac{n-1}{n} \int_0^{\pi} \sin^{n-2} \theta \, d\theta$ for $n = 2, 3, 4, \dots$
- 6. Three quickies:
 - (a) A moving particle has velocity and acceleration vectors that satisfy $|\mathbf{v}| = 1$ and $|\mathbf{a}| = 1$ at all times. Prove that the curvature of this particle's path is a constant; evaluate this constant.
 - (b) A moving particle with position $\mathbf{r}(t) = (x(t), y(t), z(t))$ satisfies

$$\mathbf{a} = f(\mathbf{r}, \mathbf{v})\mathbf{r}$$

for some scalar–valued function f. Prove that $\mathbf{r} \times \mathbf{v}$ is constant.

- (c) Calculate $\iint_{\mathcal{S}} (x \,\hat{\imath} y \,\hat{\jmath} + z^2 \,\hat{k}) \cdot \hat{\mathbf{n}} dS$, where \mathcal{S} is the boundary of any solid right circular cylinder of radius b with one base in the plane z = 1 and the other base in the plane z = 3.
- 7. Let u = u(x, y, z) be a solution of Laplace's Equation,

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0,$$

in \mathbb{R}^3 . Let \mathcal{R} be a smooth solid in \mathbb{R}^3 .

- (a) Prove that the total flux of $\mathbf{F} = \nabla u$ out through the boundary of \mathcal{R} is zero.
- (b) Prove that the total flux of $\mathbf{G} = u \nabla u$ out through the boundary of \mathcal{R} equals

$$\iiint_{\mathcal{R}} \left[\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial y} \right)^2 + \left(\frac{\partial u}{\partial z} \right)^2 \right] \mathrm{d}V$$