MATHEMATICS 317 December 2000 Final Exam

1. A skier descends the hill $z=\sqrt{4-x^{2}-y^{2}}$ along a trail with parameterization

$$
x=\sin (2 \theta), \quad y=1-\cos (2 \theta), \quad z=2 \cos \theta, \quad 0 \leq \theta \leq \frac{\pi}{2}
$$

Let P denote the point on the trail where $x=1$.
(a) Find Frenet frame $\hat{\mathbf{T}}, \hat{\mathbf{N}}, \hat{\mathbf{B}}$ and the curvature κ of the ski trail at the point P.
(b) The skier's acceleration at P is $\mathbf{a}=(-2,3,-2 \sqrt{2})$. Find, at P,
(i) the rate of change of the skier's speed and
(ii) the skier's velocity (a vector).
2. Consider the following force field, in which m, n, p, q are constants:

$$
\mathbf{F}=\left(m x y z+z^{2}-n y^{2}\right) \hat{\boldsymbol{\imath}}+\left(x^{2} z-4 x y\right) \hat{\boldsymbol{\jmath}}+\left(x^{2} y+p x z+q z^{3}\right) \hat{\mathbf{k}}
$$

(a) Find all values of m, n, p, q such that $\oint \mathbf{F} \cdot \mathrm{d} \mathbf{r}=0$ for all piecewise smooth closed curves \mathcal{C} in \mathbb{R}^{3}.
(b) For every possible choice of m, n, p, q in (a), find the work done by \mathbf{F} in moving a particle from the bottom to the top of the sphere $x^{2}+y^{2}+z^{2}=2 z$. (The direction of $\hat{\mathbf{k}}$ defines "up".)
3. Let a and b be positive constants, and let \mathcal{S} be the part of the conical surface

$$
a^{2} z^{2}=b^{2}\left(x^{2}+y^{2}\right)
$$

where $0 \leq z \leq b$. Consider the surface integral

$$
I=\iint_{\mathcal{S}}\left(x^{2}+y^{2}\right) \mathrm{d} S
$$

(a) Express I as a double integral over a disk in the $x y$-plane.
(b) Use the parametrization $x=t \cos \theta, y=t \sin \theta$, etc., to express I as a double integral over a suitable region in the $t \theta$-plane.
(c) Evaluate I using the method of your choice.
4. Let \mathcal{S} be the curved surface below, oriented by the outward normal:

$$
x^{2}+y^{2}+2(z-1)^{2}=6, \quad z \geq 0
$$

(E.g., at the high point of the surface, the unit normal is $\hat{\mathbf{k}}$.) Define

$$
\mathbf{G}=\nabla \times \mathbf{F}, \quad \text { where } \quad \mathbf{F}=\left(x z-y^{3} \cos z\right) \hat{\imath}+x^{3} e^{z} \hat{\boldsymbol{\jmath}}+x y z e^{x^{2}+y^{2}+z^{2}} \hat{\mathbf{k}}
$$

Find $\iint_{\mathcal{S}} \mathbf{G} \cdot \hat{\mathbf{n}} \mathrm{d} S$.
5. Let \mathcal{R} be the part of the solid cylinder $x^{2}+(y-1)^{2} \leq 1$ satisfying $0 \leq z \leq y^{2}$; let \mathcal{S} be the boundary of \mathcal{R}. Given $\mathbf{F}=x^{2} \hat{\boldsymbol{\imath}}+2 y \hat{\boldsymbol{\jmath}}-2 z \hat{\mathbf{k}}$,
(a) Find the total flux of \mathbf{F} outward through \mathcal{S}.
(b) Find the total flux of \mathbf{F} outward through the (vertical) cylindrical sides of \mathcal{S}. Hint: $\int_{0}^{\pi} \sin ^{n} \theta \mathrm{~d} \theta=\frac{n-1}{n} \int_{0}^{\pi} \sin ^{n-2} \theta \mathrm{~d} \theta$ for $n=2,3,4, \ldots$.
6. Three quickies:
(a) A moving particle has velocity and acceleration vectors that satisfy $|\mathbf{v}|=1$ and $|\mathbf{a}|=1$ at all times. Prove that the curvature of this particle's path is a constant; evaluate this constant.
(b) A moving particle with position $\mathbf{r}(t)=(x(t), y(t), z(t))$ satisfies

$$
\mathbf{a}=f(\mathbf{r}, \mathbf{v}) \mathbf{r}
$$

for some scalar-valued function f. Prove that $\mathbf{r} \times \mathbf{v}$ is constant.
(c) Calculate $\iint_{\mathcal{S}}\left(x \hat{\boldsymbol{\imath}}-y \hat{\boldsymbol{\jmath}}+z^{2} \hat{\mathbf{k}}\right) \cdot \hat{\mathbf{n}} \mathrm{d} S$, where \mathcal{S} is the boundary of any solid right circular cylinder of radius b with one base in the plane $z=1$ and the other base in the plane $z=3$.
7. Let $u=u(x, y, z)$ be a solution of Laplace's Equation,

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=0
$$

in \mathbb{R}^{3}. Let \mathcal{R} be a smooth solid in \mathbb{R}^{3}.
(a) Prove that the total flux of $\mathbf{F}=\nabla u$ out through the boundary of \mathcal{R} is zero.
(b) Prove that the total flux of $\mathbf{G}=u \nabla u$ out through the boundary of \mathcal{R} equals

$$
\iiint_{\mathcal{R}}\left[\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}+\left(\frac{\partial u}{\partial z}\right)^{2}\right] \mathrm{d} V
$$

