Mean and Variance of Binomial Random Variables

The probability function for a binomial random variable is

$$
b(x ; n, p)=\binom{n}{x} p^{x}(1-p)^{n-x}
$$

This is the probability of having x successes in a series of n independent trials when the probability of success in any one of the trials is p. If X is a random variable with this probability distribution,

$$
\begin{aligned}
E(X) & =\sum_{x=0}^{n} x\binom{n}{x} p^{x}(1-p)^{n-x} \\
& =\sum_{x=0}^{n} x \frac{n!}{x!(n-x)!} p^{x}(1-p)^{n-x} \\
& =\sum_{x=1}^{n} \frac{n!}{(x-1)!(n-x)!} p^{x}(1-p)^{n-x}
\end{aligned}
$$

since the $x=0$ term vanishes. Let $y=x-1$ and $m=n-1$. Subbing $x=y+1$ and $n=m+1$ into the last sum (and using the fact that the limits $x=1$ and $x=n$ correspond to $y=0$ and $y=n-1=m$, respectively)

$$
\begin{aligned}
E(X) & =\sum_{y=0}^{m} \frac{(m+1)!}{y!(m-y)!} p^{y+1}(1-p)^{m-y} \\
& =(m+1) p \sum_{y=0}^{m} \frac{m!}{y!(m-y)!} p^{y}(1-p)^{m-y} \\
& =n p \sum_{y=0}^{m} \frac{m!}{y!(m-y)!} p^{y}(1-p)^{m-y}
\end{aligned}
$$

The binomial theorem says that

$$
(a+b)^{m}=\sum_{y=0}^{m} \frac{m!}{y!(m-y)!} a^{y} b^{m-y}
$$

Setting $a=p$ and $b=1-p$

$$
\sum_{y=0}^{m} \frac{m!}{y!(m-y)!} p^{y}(1-p)^{m-y}=\sum_{y=0}^{m} \frac{m!}{y!(m-y)!} a^{y} b^{m-y}=(a+b)^{m}=(p+1-p)^{m}=1
$$

so that

$$
E(X)=n p
$$

Similarly, but this time using $y=x-2$ and $m=n-2$

$$
\begin{aligned}
E(X(X-1)) & =\sum_{x=0}^{n} x(x-1)\binom{n}{x} p^{x}(1-p)^{n-x} \\
& =\sum_{x=0}^{n} x(x-1) \frac{n!}{x!(n-x)!} p^{x}(1-p)^{n-x} \\
& =\sum_{x=2}^{n} \frac{n!}{(x-2)!(n-x)!} p^{x}(1-p)^{n-x} \\
& =n(n-1) p^{2} \sum_{x=2}^{n} \frac{(n-2)!}{(x-2)!(n-x)!} p^{x-2}(1-p)^{n-x} \\
& =n(n-1) p^{2} \sum_{y=0}^{m} \frac{m!}{y!(m-y)!} p^{y}(1-p)^{m-y} \\
& =n(n-1) p^{2}(p+(1-p))^{m} \\
& =n(n-1) p^{2}
\end{aligned}
$$

So the variance of X is

$$
\begin{aligned}
& E\left(X^{2}\right)-E(X)^{2}=E(X(X-1))+E(X)-E(X)^{2}=n(n-1) p^{2}+n p-(n p)^{2} \\
& \quad=n p(1-p)
\end{aligned}
$$

