
Using the Fourier Transform to Solve PDEs

In these notes we are going to solve the wave and telegraph equations on the full real line by Fourier

transforming in the spatial variable. We start with

The Wave Equation

If u(x, t) is the displacement from equilibrium of a string at position x and time t and if the string is

undergoing small amplitude transverse vibrations, then we have seen that

∂2u
∂ t2

(x, t) = c2 ∂2u
∂x2 (x, t) (1)

for a constant c. We are now going to solve this equation by multiplying both sides by e−ikx and integrating

with respect to x. That is, we shall Fourier transform with respect to the spatial variable x. Denote the

Fourier transform with respect to x, for each fixed t, of u(x, t) by

û(k, t) =

∫ ∞

−∞

u(x, t)e−ikx dx

We have already seen (in property (D) in the notes “Fourier Transforms”) that the Fourier transform of the

derivative f ′(x) is
∫ ∞

−∞

f ′(x)e−ikx dx = ik

∫ ∞

−∞

f(x)e−ikx dx = ikf̂(k) (2)

(by integration by parts with u = e−ikx, dv = f ′(x) dx, du = −ike−ikx dx, v(x) = f(x) and assuming that

f(x) → 0 as x → ±∞). Applying this with f(x) = ∂
∂x

u(x, t) and a second time with f(x) = u(x, t), gives

that the Fourier transform of ∂2u
∂x2 (x, t) is −k2û(k, t). Computation of the Fourier transform of ∂2u

∂ t2
(x, t) is

even easier. For the first t–derivative,

∫ ∞

−∞

ut(x, t)e
−ikx dx =

∫ ∞

−∞

lim
h→0

u(x,t+h)−u(x,t)
h

e−ikx dx

= lim
h→0

1
h

[
∫ ∞

−∞

u(x, t+ h)e−ikx dx−
∫ ∞

−∞

u(x, t)e−ikx dx

]

= lim
h→0

1
h

[

û(k, t+ h)− û(k, t)
]

= ∂
∂t
û(k, t) (3)

To get two t-derivatives, we just apply this twice (with u replaced by ut the first time)

∫ ∞

−∞

∂2u
∂ t2

(x, t) e−ikx dx = ∂
∂ t

∫ ∞

−∞

∂
∂ t

u(x, t) e−ikx dx = ∂2

∂ t2
û(k, t)

So applying the Fourier transform to both sides of (1) gives

∂2

∂ t2
û(k, t) = −c2k2û(k, t) (4)

This has not yet led to the solution for u(x, t) or û(k, t), but it has led to a considerable simplification. We

now have, for each fixed k, a constant coefficient, homogeneous, second order ordinary differential equation

for û(k, t).
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To emphasise that each k may now be treated independently, fix any k and write û(k, t) = U(t). The

differential equation (4) now is U ′′(t) + c2k2U(t) = 0. From earlier courses, we know that this equation can

be solved easily by trying U(t) = ert. Since U ′′(t) + c2k2U(t) = (r2 + c2k2)ert = 0 if and only if r = ±ick,

the general solution to U ′′(t)+ c2k2U(t) = 0, for any k 6= 0, is U(t) = d1e
−ickt+d2e

ickt. For k = 0, when the

two values of r = ±ick are the same, the differential equation reduces to U ′′ = 0 and has general solution

U(t) = d1 + d2t. We have to reject the d2t solution (i.e. we have to require that d2 = 0) on physical grounds

– small transverse oscillations certainly do not include amplitudes that grow to infinity at t goes to infinity.

Recalling that U(t) = û(k, t) we conclude that the general solution to (4) is

û(k, t) = F̂ (k)e−ikct + Ĝ(k)eikct

We have renamed the arbitrary constants d1 and d2 to F̂ (k) and Ĝ(k) respectively. The reason for these

funny names will be made clear very soon. In any event, the arbitrary constants are certainly allowed to

depend on k – viewed as an equation for an unknown function of t, (4) is a different equation for every

different value of k. To recover u(x, t) we just need to take the inverse Fourier transform

u(x, t) = 1
2π

∫ ∞

−∞

û(k, t)eikx dk

= 1
2π

∫ ∞

−∞

[

F̂ (k)e−ikct + Ĝ(k)eikct
]

eikx dk

= 1
2π

∫ ∞

−∞

F̂ (k)eik(x−ct) dk + 1
2π

∫ ∞

−∞

Ĝ(k)eik(x+ct) dk

= F (x− ct) +G(x+ ct)

This is called the D’Alembert form of the solution of the wave equation. The F (x − ct) part of the

solution represents a wave packet moving to the right with speed c. You can see this by observing that all

points (x, t) in space time for which x − ct takes the same fixed value, z, have the same value of F (x− ct),

namely F (z). So if you move so that your position at time t is x = z + ct (i.e. move the right with speed

c) you always see the same string height. The figure below illustrates this. It contains the graphs of F (x),

F (x− c) = F (x− ct)
∣

∣

t=1
and F (x− 2c) = F (x− ct)

∣

∣

t=2
for a bump shaped F (x). In the figure I have chosen

the location of the tick z on the x–axis so that F (z) = maxx F (x).

x

y

z

y = F (x)
t = 0

z + c

y = F (x − c)
t = 1

z + 2c

y = F (x− 2c)
t = 2

Similarly, G(x + ct) represents a wave packet moving to the left with speed c.

Suppose, for example, the string starts at rest with the initial bump u(x, 0) = p(x). To satisfy these

initial conditions, F and G must obey

p(x) = u(x, 0) = F (x) +G(x)

and

0 = ut(x, 0) = −cF ′(x) + cG′(x) ⇐⇒ F ′(x) = G′(x) ⇐⇒ F (x) = G(x) + C

These equations only determine F and G up to an additive constant. This additive constant is irrelevant

— adding any constant to F while subtracting the same constant from G does not change the value of
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F (x− ct) +G(x+ ct) for any x or t. The functions F (x) = G(x) = 1
2p(x) do the job. So the bump resolves

itself into two equal sized halves. One moves to the right with speed c and the other moves to the left with

speed c. If the initial speed ut(x, 0) = s(x) is not zero, the string behaves similarly, but the left and right

moving parts need not have the same size and shape.

The Telegraph Equation

We may also use the same technique to solve the telegraph equation

utt + (α+ β)ut + αβu = c2uxx (5)

though the details are somewhat messier. The case α = β = 0 is just the wave equation again. We now

consider only the case that α, β > 0, i.e. that there is nonzero resistance in the wire and nonzero conductance

to ground.

Again multiply both sides by e−ikx, integrate with respect to x and denote the Fourier transform with

respect to x, for each fixed t, of u(x, t) by

û(k, t) =

∫ ∞

−∞

u(x, t)e−ikx dx

Using (2) and (3) gives

ûtt(k, t) + (α+ β)ût(k, t) + αβû(k, t) = −k2c2û(k, t) (6)

Once again, we have, for each fixed k, a constant coefficient, homogeneous, second order ordinary differential

equation for û(k, t). To emphasise, again, that each k may now be treated independently, fix any k and write

û(k, t) = U(t). The differential equation (6) now is

U ′′(t) + (α + β)U ′(t) + (αβ + c2k2)U(t) = 0 (6)

The guess U(t) = ert is a solution if and only if

0 = U ′′(t) + (α+ β)U ′(t) + (αβ + c2k2)U(t) =
(

r2 + (α + β)r + (αβ + c2k2)
)

ert = 0

This is the case if and only if

r =
−(α+β)±

√
(α+β)2−4(αβ+c2k2)

2 =
−(α+β)±

√
(α−β)2−4c2k2

2

If 4c2k2 ≤ (α − β)2 then both values of r are real and negative. To see this, note that

0 ≤ (α− β)2 − 4c2k2 ≤ (α− β)2

⇒ 0 ≤
√

(α− β)2 − 4c2k2 ≤ |α− β|

⇒ −(α+β)−|α−β|
2 ≤ −(α+β)±

√
(α−β)2−4c2k2

2 ≤ −(α+β)+|α−β|
2

Because |α−β| is either α−β (if α ≥ β) or β−α (if α ≤ β),
−(α+β)±

√
(α−β)2−4c2k2

2 is a real number between

−α and −β and both values of r are strictly negative. Then both solutions for U(t) damp to zero as t → ∞
and thus represent transients in the wire.

So we shall only consider û(k, t)’s that are zero unless 4c2k2 > (α− β)2. Then

r =
−(α+β)±

√
(α−β)2−4c2k2

2 = −α+β
2 ± 1

2 i
√

4c2k2 − (α− β)2 = −γ ± iω(k)
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where

γ = α+β
2 , ω(k) =

√

c2k2 −
(

α−β
2

)2

so that the general solution to (6) is

û(k, t) = U(t) = F̂ (k)e[−γ−iω(k)]t + Ĝ(k)e[−γ+iω(k)]t

= e−γt
[

F̂ (k)e−iω(k)t + Ĝ(k)eiω(k)t
]

where F̂ (k) and Ĝ(k) are arbitrary constants (recall that k is a parameter which is just a constant as far as

the ODE (6) is concerned). So

u(x, t) = 1
2π e

−γt

∫ ∞

−∞

[

F̂ (k)e−iω(k)t + Ĝ(k)eiω(k)t
]

eikx dk

If we carefully tune our telegraph wire so that α = β, then ω(k) = ck and

u(x, t) = 1
2πe

−γt

∫ ∞

−∞

[

F̂ (k)e−ikct + Ĝ(k)eikct
]

eikx dk

= 1
2πe

−γt

∫ ∞

−∞

[

F̂ (k)eik(x−ct) + Ĝ(k)eik(x+ct)
]

dk

= e−γt
[

F (x− ct) +G(x + ct)
]

As in the case of the solution to the wave equation, we have a wave packet that is moving to the right with

speed c and a wave packet that is moving to the left with speed c. The wave packets do not change shape

as time progresses, but the factor of e−γt causes the size of the packets to diminish. If we put in amplifiers

periodically along the wire, we can use it to transmit signals without distortion.

If α 6= β, then ω(k) is a more complicated function of k. If F̂ (k) is nonzero only for k in a narrow interval

around some fixed (spatial frequency) k0, then in that interval ω(k) is essentially given by the beginning of

its Taylor expansion about k0, which is ω(k0) +
dω
dk

(k0) (k − k0). Writing v(k0) =
dω
dk

(k0),

1
2π e

−γt

∫ ∞

−∞

F̂ (k)e−iω(k)teikx dk = 1
2π e

−γt

∫ ∞

−∞

F̂ (k)e−i[ω(k0)+v(k0)(k−k0)]teikx dk

= e−γte−i[ω(k0)−v(k0)k0]t 1
2π

∫ ∞

−∞

F̂ (k)eik[x−v(k0)t] dk

= e−γte−i[ω(k0)−v(k0)k0]tF
(

x− v(k0)t
)

This tells us that the part of the wave packet with k very close to k0 travels with speed v(k0), which is called

the group velocity. Except when α = β, v(k0) has a nontrivial dependence on k0. So parts of the wave

packet with different values of k travel with different speeds. This is called dispersion. It causes a distortion

of the wave packet, which is illustrated in an applet on our course web page.
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