
Taylor Expansions in 2d

In your first year Calculus course you developed a family of formulae for approximating

a function F (t) for t near any fixed point t0. The crudest approximation was

F (t0 +∆t) ≈ F (t0)

The next better approximation included a correction that is linear in ∆t.

F (t0 +∆t) ≈ F (t0) + F ′(t0)∆t

The next better approximation included a correction that is quadratic in ∆t.

F (t0 +∆t) ≈ F (t0) + F ′(t0)∆t+ 1
2
F ′′(t0)∆t2

And so on. The approximation that includes all corrections up to order ∆tn is

F (t0 +∆t) ≈ F (t0) + F ′(t0)∆t+ 1
2!F

′′(t0)∆t2 + 1
3!F

(3)(t0)∆t3 + · · ·+ 1
n!F

(n)(t0)∆tn

You may have also found a formula for the error introduced in making this approximation.

The error En(∆t) is defined by

F (t0 +∆t) = F (t0) + F ′(t0)∆t+ 1
2!
F ′′(t0)∆t2 + · · ·+ 1

n!
F (n)(t0)∆tn + En(∆t)

and obeys

En(∆t) = 1
(n+1)!

F (n+1)(t∗)∆tn+1

for some (unknown) t∗ between t0 and t0 +∆t. Even though we do not know what t∗ is,

we can still learn a lot from this formula for En. If we know that
∣

∣F (n+1)(t)
∣

∣ ≤ Mn+1 for

all t between t0 and t0 + ∆t, then
∣

∣En(∆t)
∣

∣ ≤
Mn+1

(n+1)!∆tn+1, which tells us that En(∆t)

goes to zero like the (n+ 1)st power of ∆t as ∆t tends to zero.

We now generalize all this to functions of more than one variable. To be concrete and

to save writing, we’ll just look at functions of two variables, but the same strategy works

for any number of variables. Suppose that we wish to approximate f(x0 + ∆x, y0 + ∆y)

for ∆x and ∆y near zero. The trick is to write

f(x0 +∆x, y0 +∆y) = F (1) with F (t) = f(x0 + t∆x, y0 + t∆y)

and think of x0, y0, ∆x and ∆y as constants so that F is a function of the single variable

t. Then we can apply our single variable formulae with t0 = 0 and ∆t = 1. To do so we

need to compute various derivatives of F (t) at t = 0, by applying the chain rule to

F (t) = f
(

x(t), y(t)
)

with x(t) = x0 + t∆x, y(t) = y0 + t∆y
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Since d
dt
x(t) = ∆x and d

dt
y(t) = ∆y, the chain rule gives

dF
dt
(t) = ∂f

∂x

(

x(t), y(t)
)

d
dt
x(t) + ∂f

∂y

(

x(t), y(t)
)

d
dt
y(t)

= ∂f
∂x

(x0 + t∆x, y0 + t∆y)∆x+ ∂f
∂y

(x0 + t∆x, y0 + t∆y)∆y

d2F
dt2

(t) =
[

∂fx
∂x

(

x(t), y(t)
)

d
dt
x(t) + ∂fx

∂y

(

x(t), y(t)
)

d
dt
y(t)

]

∆x

+
[

∂fy
∂x

(

x(t), y(t)
)

d
dt
x(t) +

∂fy
∂y

(

x(t), y(t)
)

d
dt
y(t)

]

∆y

= ∂2f
∂x2∆x2 + ∂2 f

∂y∂x
∆y∆x+ ∂2 f

∂x∂y
∆x∆y + ∂2f

∂y2 ∆y2

= ∂2f
∂x2∆x2 + 2 ∂2 f

∂x∂y
∆x∆y + ∂2f

∂y2 ∆y2

and so on. It’s not hard to prove by induction that, in general,

F (n)(t) =

n
∑

m=0

(

n
m

)

∂n f
∂xm∂yn−m (x0 + t∆x, y0 + t∆y)∆xm∆yn−m

where
(

n
m

)

= n!
m!(n−m)!

is the standard binomial coefficient. So when t = 0,

F (0) = f(x0, y0)

dF
dt
(0) = ∂f

∂x
(x0, y0)∆x+ ∂f

∂y
(x0, y0)∆y

d2F
dt2

(0) = ∂2f
∂x2 (x0, y0)∆x2 + 2 ∂2 f

∂x∂y
(x0, y0)∆x∆y + ∂2f

∂y2 (x0, y0)∆y2

Subbing these into

f(x0 +∆x, y0 +∆y) = F (t0 +∆t)
∣

∣

t0=0,∆t=1
= F (0) + F ′(0) + 1

2F
′′(0) + · · ·

gives

f(x0 +∆x, y0 +∆y) = f(x0, y0)

+ fx(x0, y0)∆x+ fy(x0, y0)∆y

+ 1
2

[

fxx(x0, y0)∆x2 + 2fxy(x0, y0)∆x∆y + fyy(x0, y0)∆y2
]

+O
(

∆x3 +∆y3
)
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