
Equality of Mixed Partials

Theorem. If the partial derivatives ∂2 f
∂x∂y

and ∂2 f
∂y∂x

exist and are continuous at (x0, y0), then

∂2 f
∂x∂y

(x0, y0) =
∂2 f
∂y∂x

(x0, y0)

Proof: Here is an outline of the proof. The details are given as footnotes at the end of the

outline. Fix x0 and y0 and define(1)

F (h, k) = 1
hk

[

f(x0 + h, y0 + k)− f(x0, y0 + k)− f(x0 + h, y0) + f(x0, y0)
]

Then, by the mean value theorem,

F (h, k)
2
= 1

h

[

∂f
∂y

(x0 + h, y0 + θ1k)−
∂f
∂y

(x0, y0 + θ1k)
]

3
= ∂

∂x
∂f
∂y

(x0 + θ2h, y0 + θ1k)

F (h, k)
4
= 1

k

[

∂f
∂x

(x0 + θ3h, y0 + k)− ∂f
∂x

(x0 + θ3h, y0)
]

5
= ∂

∂y
∂f
∂x

(x0 + θ3h, y0 + θ4k)

for some 0 < θ1, θ2, θ3, θ4 < 1. All of θ1, θ2, θ3, θ4 depend on x0, y0, h, k. Hence

∂
∂x

∂f
∂y

(x0 + θ2h, y0 + θ1k) =
∂
∂y

∂f
∂x

(x0 + θ3h, y0 + θ4k)

for all h and k. Taking the limit (h, k) → (0, 0) and using the assumed continuity of both partial

derivatives at (x0, y0) gives
∂
∂x

∂f
∂y

(x0, y0) =
∂
∂y

∂f
∂x

(x0, y0)

The Details

(1) We define F (h, k) in this way because both partial derivatives ∂2 f
∂x∂y

(x0, y0) and ∂2 f
∂y∂x

(x0, y0)

are defined as limits of F (h, k) as h, k → 0. For example,

∂
∂y

∂f
∂x

(x0, y0) = lim
k→0

1
k

[

∂f
∂x

(x0, y0 + k)− ∂f
∂x

(x0, y0)
]

= lim
k→0

1
k

[

lim
h→0

f(x0+h,y0+k)−f(x0,y0+k)
h

− lim
h→0

f(x0+h,y0)−f(x0,y0)
h

]

= lim
k→0

lim
h→0

f(x0+h,y0+k)−f(x0,y0+k)−f(x0+h,y0)+f(x0,y0)
hk

= lim
k→0

lim
h→0

F (h, k)

Similarly,

∂
∂x

∂f
∂y

(x0, y0) = lim
h→0

1
h

[

∂f
∂y

(x0 + h, y0)−
∂f
∂y

(x0, y0)
]

= lim
h→0

1
h

[

lim
k→0

f(x0+h,y0+k)−f(x0+h,y0)
k

− lim
k→0

f(x0,y0+k)−f(x0,y0)
k

]

= lim
h→0

lim
k→0

f(x0+h,y0+k)−f(x0+h,y0)−f(x0,y0+k)+f(x0,y0)
hk

= lim
h→0

lim
k→0

F (h, k)
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(2) The mean value theorem says that, for any differentiable function ϕ(x), the slope of the line

joining the points
(

x0, ϕ(x0)
)

and
(

x0 + k, ϕ(x0 + k)
)

on the graph of ϕ is the same as the

slope of the tangent to the graph at some point between x0 and x0 + k. This is, there is some

0 < θ1 < 1 such that

ϕ(x0+k)−ϕ(x0)
k

= dϕ
dx

(x0 + θ1k)

x

y

y = ϕ(x)

x0 x0+kx0+θ1k

Applying this with x replaced by y and ϕ replaced by G(y) = f(x0 + h, y) − f(x0, y) gives

G(y0+k)−G(y0)
k

= dG
dy

(y0 + θ1k) for some 0 < θ1 < 1

= ∂f
∂y

(x0 + h, y0 + θ1k)−
∂f
∂y

(x0, y0 + θ1k)

Hence, for some 0 < θ1 < 1,

F (h, k) = 1
h

[

G(y0+k)−G(y0)
k

]

= 1
h

[

∂f
∂y

(x0 + h, y0 + θ1k)−
∂f
∂y

(x0, y0 + θ1k)
]

(3) Define H(x) = ∂f
∂y

(x, y0 + θ1k). By the mean value theorem

F (h, k) = 1
h

[

H(x0 + h)−H(x0)
]

= dH
dx

(x0 + θ2h) for some 0 < θ2 < 1

= ∂
∂x

∂f
∂y

(x0 + θ2h, y0 + θ1k)

(4) Define A(x) = f(x, y0 + k)− f(x, y0). By the mean value theorem

F (h, k) = 1
k

[

A(x0+h)−A(x0)
h

]

= 1
k
dA
dx

(x0 + θ3h) for some 0 < θ3 < 1

= 1
k

[

∂f
∂x

(x0 + θ3h, y0 + k)− ∂f
∂x

(x0 + θ3h, y0)
]

(5) Define B(y) = ∂f
∂x

(x0 + θ3h, y). By the mean value theorem

F (h, k) = 1
k

[

B(y0 + k)−B(y0)
]

= dB
dy

(y0 + θ4k) for some 0 < θ4 < 1

= ∂
∂y

∂f
∂x

(x0 + θ3h, y0 + θ4k)
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