Equality of Mixed Partials

Theorem. If the partial derivatives $\frac{\partial^{2} f}{\partial x \partial y}$ and $\frac{\partial^{2} f}{\partial y \partial x}$ exist and are continuous at $\left(x_{0}, y_{0}\right)$, then

$$
\frac{\partial^{2} f}{\partial x \partial y}\left(x_{0}, y_{0}\right)=\frac{\partial^{2} f}{\partial y \partial x}\left(x_{0}, y_{0}\right)
$$

Proof: Here is an outline of the proof. The details are given as footnotes at the end of the outline. Fix x_{0} and y_{0} and define ${ }^{(1)}$

$$
F(h, k)=\frac{1}{h k}\left[f\left(x_{0}+h, y_{0}+k\right)-f\left(x_{0}, y_{0}+k\right)-f\left(x_{0}+h, y_{0}\right)+f\left(x_{0}, y_{0}\right)\right]
$$

Then, by the mean value theorem,

$$
\begin{aligned}
F(h, k) & \stackrel{2}{=} \frac{1}{h}\left[\frac{\partial f}{\partial y}\left(x_{0}+h, y_{0}+\theta_{1} k\right)-\frac{\partial f}{\partial y}\left(x_{0}, y_{0}+\theta_{1} k\right)\right] \\
& \stackrel{3}{=} \frac{\partial}{\partial x} \frac{\partial f}{\partial y}\left(x_{0}+\theta_{2} h, y_{0}+\theta_{1} k\right) \\
F(h, k) & \stackrel{4}{=} \frac{1}{k}\left[\frac{\partial f}{\partial x}\left(x_{0}+\theta_{3} h, y_{0}+k\right)-\frac{\partial f}{\partial x}\left(x_{0}+\theta_{3} h, y_{0}\right)\right] \\
& \stackrel{5}{=} \frac{\partial}{\partial y} \frac{\partial f}{\partial x}\left(x_{0}+\theta_{3} h, y_{0}+\theta_{4} k\right)
\end{aligned}
$$

for some $0<\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}<1$. All of $\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}$ depend on x_{0}, y_{0}, h, k. Hence

$$
\frac{\partial}{\partial x} \frac{\partial f}{\partial y}\left(x_{0}+\theta_{2} h, y_{0}+\theta_{1} k\right)=\frac{\partial}{\partial y} \frac{\partial f}{\partial x}\left(x_{0}+\theta_{3} h, y_{0}+\theta_{4} k\right)
$$

for all h and k. Taking the limit $(h, k) \rightarrow(0,0)$ and using the assumed continuity of both partial derivatives at $\left(x_{0}, y_{0}\right)$ gives

$$
\frac{\partial}{\partial x} \frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)=\frac{\partial}{\partial y} \frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)
$$

The Details

(1) We define $F(h, k)$ in this way because both partial derivatives $\frac{\partial^{2} f}{\partial x \partial y}\left(x_{0}, y_{0}\right)$ and $\frac{\partial^{2} f}{\partial y \partial x}\left(x_{0}, y_{0}\right)$ are defined as limits of $F(h, k)$ as $h, k \rightarrow 0$. For example,

$$
\begin{aligned}
\frac{\partial}{\partial y} \frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) & =\lim _{k \rightarrow 0} \frac{1}{k}\left[\frac{\partial f}{\partial x}\left(x_{0}, y_{0}+k\right)-\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\right] \\
& =\lim _{k \rightarrow 0} \frac{1}{k}\left[\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h, y_{0}+k\right)-f\left(x_{0}, y_{0}+k\right)}{h}-\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h, y_{0}\right)-f\left(x_{0}, y_{0}\right)}{h}\right] \\
& =\lim _{k \rightarrow 0} \lim _{h \rightarrow 0} \frac{f\left(x_{0}+h, y_{0}+k\right)-f\left(x_{0}, y_{0}+k\right)-f\left(x_{0}+h, y_{0}\right)+f\left(x_{0}, y_{0}\right)}{h k} \\
& =\lim _{k \rightarrow 0} \lim _{h \rightarrow 0} F(h, k)
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\frac{\partial}{\partial x} \frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) & =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\partial f}{\partial y}\left(x_{0}+h, y_{0}\right)-\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\lim _{k \rightarrow 0} \frac{f\left(x_{0}+h, y_{0}+k\right)-f\left(x_{0}+h, y_{0}\right)}{k}-\lim _{k \rightarrow 0} \frac{f\left(x_{0}, y_{0}+k\right)-f\left(x_{0}, y_{0}\right)}{k}\right] \\
& =\lim _{h \rightarrow 0} \lim _{k \rightarrow 0} \frac{f\left(x_{0}+h, y_{0}+k\right)-f\left(x_{0}+h, y_{0}\right)-f\left(x_{0}, y_{0}+k\right)+f\left(x_{0}, y_{0}\right)}{h k} \\
& =\lim _{h \rightarrow 0} \lim _{k \rightarrow 0} F(h, k)
\end{aligned}
$$

(2) The mean value theorem says that, for any differentiable function $\varphi(x)$, the slope of the line joining the points $\left(x_{0}, \varphi\left(x_{0}\right)\right)$ and $\left(x_{0}+k, \varphi\left(x_{0}+k\right)\right)$ on the graph of φ is the same as the slope of the tangent to the graph at some point between x_{0} and $x_{0}+k$. This is, there is some $0<\theta_{1}<1$ such that

$$
\frac{\varphi\left(x_{0}+k\right)-\varphi\left(x_{0}\right)}{k}=\frac{d \varphi}{d x}\left(x_{0}+\theta_{1} k\right)
$$

Applying this with x replaced by y and φ replaced by $G(y)=f\left(x_{0}+h, y\right)-f\left(x_{0}, y\right)$ gives

$$
\begin{aligned}
\frac{G\left(y_{0}+k\right)-G\left(y_{0}\right)}{k} & =\frac{d G}{d y}\left(y_{0}+\theta_{1} k\right) \quad \text { for some } 0<\theta_{1}<1 \\
& =\frac{\partial f}{\partial y}\left(x_{0}+h, y_{0}+\theta_{1} k\right)-\frac{\partial f}{\partial y}\left(x_{0}, y_{0}+\theta_{1} k\right)
\end{aligned}
$$

Hence, for some $0<\theta_{1}<1$,

$$
F(h, k)=\frac{1}{h}\left[\frac{G\left(y_{0}+k\right)-G\left(y_{0}\right)}{k}\right]=\frac{1}{h}\left[\frac{\partial f}{\partial y}\left(x_{0}+h, y_{0}+\theta_{1} k\right)-\frac{\partial f}{\partial y}\left(x_{0}, y_{0}+\theta_{1} k\right)\right]
$$

(3) Define $H(x)=\frac{\partial f}{\partial y}\left(x, y_{0}+\theta_{1} k\right)$. By the mean value theorem

$$
\begin{aligned}
F(h, k) & =\frac{1}{h}\left[H\left(x_{0}+h\right)-H\left(x_{0}\right)\right] \\
& =\frac{d H}{d x}\left(x_{0}+\theta_{2} h\right) \quad \text { for some } 0<\theta_{2}<1 \\
& =\frac{\partial}{\partial x} \frac{\partial f}{\partial y}\left(x_{0}+\theta_{2} h, y_{0}+\theta_{1} k\right)
\end{aligned}
$$

(4) Define $A(x)=f\left(x, y_{0}+k\right)-f\left(x, y_{0}\right)$. By the mean value theorem

$$
\begin{aligned}
F(h, k) & =\frac{1}{k}\left[\frac{A\left(x_{0}+h\right)-A\left(x_{0}\right)}{h}\right] \\
& =\frac{1}{k} \frac{d A}{d x}\left(x_{0}+\theta_{3} h\right) \quad \text { for some } 0<\theta_{3}<1 \\
& =\frac{1}{k}\left[\frac{\partial f}{\partial x}\left(x_{0}+\theta_{3} h, y_{0}+k\right)-\frac{\partial f}{\partial x}\left(x_{0}+\theta_{3} h, y_{0}\right)\right]
\end{aligned}
$$

(5) Define $B(y)=\frac{\partial f}{\partial x}\left(x_{0}+\theta_{3} h, y\right)$. By the mean value theorem

$$
\begin{aligned}
F(h, k) & =\frac{1}{k}\left[B\left(y_{0}+k\right)-B\left(y_{0}\right)\right] \\
& =\frac{d B}{d y}\left(y_{0}+\theta_{4} k\right) \quad \text { for some } 0<\theta_{4}<1 \\
& =\frac{\partial}{\partial y} \frac{\partial f}{\partial x}\left(x_{0}+\theta_{3} h, y_{0}+\theta_{4} k\right)
\end{aligned}
$$

