
Approximating Functions Near a Specified Point

Suppose that you are interested in the values of some function f(x) for x near some fixed point x0.

The function is too complicated to work with directly. So you wish to work instead with some other function

F (x) that is both simple and a good approximation to f(x) for x near x0. We’ll consider an example of this

scenario later. First, we use the Fundamental Theorem of Calculus and integration by parts to develop several

different approximations.

The Fundamental Theorem of Calculus says that
∫

x

x0
f ′(t) dt = f(x)− f(x0), or equivalently,

f(x) = f(x0) +

∫

x

x0

f ′(t) dt (1′)

First approximation

The simplest functions are those that are constants. Our first, and crudest, approximation is the

constant function f(x0).

f(x) ≈ f(x0) (1)

Here is a figure showing the graphs of a typical f(x) and approximating function F (x). At x = x0, f(x) and

x0
x

y
y = f(x)

y = F (x) = f(x0)

F (x) take the same value. For x very near x0, the values of f(x) and F (x) remain close together. But the

quality of the approximation deteriorates fairly quickly as x moves away from x0. Equation (1′) says that the

error you make when you approximate f(x) by f(x0) (namely |fx) − f(x0)|) is exactly
∣

∣

∣

∫

x

x0
f ′(t) dt

∣

∣

∣
. Usually

this integral is too complicated to evaluate in a useful way (or you wouldn’t be approximating f(x) in this first

place). But if you can find a constant M1 such that |f ′(t)| ≤ M1 for all t between x0 and x (we’ll see examples

of this later), then

error =

∣

∣

∣

∣

∫

x

x0

f ′(t) dt

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

x

x0

M1 dt

∣

∣

∣

∣

= M1|x− x0|

So the error grows at most linearly as x moves away from x0.

Second approximation – the tangent line, or linear, approximation

We now develop a better approximation by applying integration by parts to the integral in (1′). Note

that the integration variable is t. As far as the integration is concerned, x is a constant. We use u(t) = f ′(t)

and v(t) = x− t. Since x is a constant, dv = v′(t)dt = −dt.

f(x) = f(x0) +

∫ x

x0

f ′(t) dt = f(x0)−

∫ x

x0

u(t)v′(t) dt = f(x0)− u(x)v(x) + u(x0)v(x0) +

∫ x

x0

v(t)u′(t) dt

= f(x0) + f ′(x0)(x − x0) +

∫

x

x0

(x− t)f ′′(t) dt (2′)
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Our second approximation is

f(x) ≈ f(x0) + f ′(x0)(x− x0) (2)

It is exactly the tangent line approximation to f(x) at x0. The original function f(x) and the approximating

function F (x) = f(x0)+f ′(x0)(x−x0) have the same value and the same slope at x = x0. That is, f(x0) = F (x0)

and f ′(x0) = F ′(x0). Here is a figure showing the graphs of a typical f(x) and approximating function F (x).

Observe that the graph of f(x0) + f ′(x0)(x − x0) remains close to the graph of f(x) for a much larger range

x0
x

y

y = f(x)

y = F (x) = f(x0) + f ′(x0)(x − x0)

of x than did the graph of f(x0). Equation (2′) says that the error you make when you approximate f(x) by

f(x0)+ f ′(x0)(x−x0) is exactly
∣

∣

∣

∫ x

x0
(x− t)f ′′(t) dt

∣

∣

∣
. Again, this integral is usually too complicated to evaluate

in a useful way. But if you can find a constant M2 such that |f ′′(t)| ≤ M2 for all t between x0 and x, then

error =

∣

∣

∣

∣

∫ x

x0

(x− t)f ′′(t) dt

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ x

x0

(x − t)M2 dt

∣

∣

∣

∣

=

∣

∣

∣

∣

−M2
(x−t)2

2

∣

∣

t=x

t=x0

∣

∣

∣

∣

= M2

2 (x− x0)
2

So the error grows at most quadratically as x moves away from x0.

Third approximation – the quadratic approximation

We develop a still better approximation by applying integration by parts a second time – this time to

the integral in (2′). We use u(t) = f ′′(t) and v(t) = 1
2 (x− t)2, so that v′(t) = −(x− t).

f(x) = f(x0) + f ′(x0)(x − x0) +

∫ x

x0

(x− t)f ′′(t) dt = f(x0) + f ′(x0)(x − x0)−

∫ x

x0

u(t)v′(t) dt

= f(x0) + f ′(x0)(x − x0)− u(x)v(x) + u(x0)v(x0) +

∫

x

x0

v(t)u′(t) dt

= f(x0) + f ′(x0)(x − x0)−
1
2f

′′(x)(x − x)2 + 1
2f

′′(x0)(x − x0)
2 + 1

2

∫

x

x0

(x− t)2f (3)(t) dt

= f(x0) + f ′(x0)(x − x0) +
1
2f

′′(x0)(x − x0)
2 + 1

2

∫ x

x0

(x− t)2f (3)(t) dt (3′)

Our third approximation is

f(x) ≈ f(x0) + f ′(x0)(x − x0) +
1
2f

′′(x0)(x − x0)
2 (3)

It is called the quadratic approximation. Equation (3′) says that the error you make when you approximate

f(x) by f(x0)+ f ′(x0)(x− x0)+
1
2f

′′(x0)(x−x0)
2 is exactly

∣

∣

∣

1
2

∫ x

x0
(x− t)2f (3)(t) dt

∣

∣

∣
. If you can find a constant

M3 such that |f (3)(t)| ≤ M3 for all t between x0 and x , then

error =

∣

∣

∣

∣

1
2

∫ x

x0

(x− t)2f (3)(t) dt

∣

∣

∣

∣

≤

∣

∣

∣

∣

1
2

∫ x

x0

(x− t)2M3 dt

∣

∣

∣

∣

=

∣

∣

∣

∣

−M3
(x−t)3

2×3

∣

∣

t=x

t=x0

∣

∣

∣

∣

= M3

3! |x− x0|
3

where 3! (read “three factorial”) means 1 × 2 × 3. Here is a figure showing the graphs of a typical f(x) and

quadratic approximating function F (x). The third approximation looks better than both the first and second.
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x0
x

y

y = f(x)
y = F (x) = f(x0) + f ′(x0)(x − x0) +

1
2f

′′(x0)(x − x0)
2

Still better approximations – Taylor polynomials

We can use the same strategy to generate still better approximations by polynomials of any degree we

like. Integrating by parts repeatedly gives, for any natural number n,

f(x) = f(x0) + f ′(x0)(x − x0) +
1
2!f

′′(x0)(x − x0)
2 + 1

3!f
(3)(x0)(x− x0)

3 + · · ·+ 1
n!f

(n)(x0)(x− x0)
n

+ 1
n!

∫ x

x0

(x − t)nf (n+1)(t) dt
(4′)

If you can find a constant Mn+1 such that |f (n+1)(t)| ≤ Mn+1 for all t between x0 and x, then the error in the

approximation

f(x) ≈ f(x0) + f ′(x0)(x − x0) +
1
2!f

′′(x0)(x− x0)
2 + 1

3!f
(3)(x0)(x− x0)

3 + · · ·+ 1
n!f

(n)(x0)(x − x0)
n (4)

is at most

error =

∣

∣

∣

∣

1
n!

∫ x

x0

(x − t)nf (n+1)(t) dt

∣

∣

∣

∣

≤

∣

∣

∣

∣

1
n!

∫ x

x0

(x− t)nMn+1 dt

∣

∣

∣

∣

=

∣

∣

∣

∣

−Mn+1
(x−t)n+1

n!×(n+1)

∣

∣

t=x

t=x0

∣

∣

∣

∣

= Mn+1

(n+1)! |x− x0|
n+1

The right hand side of (4) is called the Taylor polynomial of degree n for f .

There is a second formula for the error that we can derive easily from En = 1
n!

∫

x

x0
(x− t)nf (n+1)(t) dt.

The only assumption that we shall make is that f (n+1)(t) is continuous in t for t running between x0 and x.

Let m and M denote the largest and smallest values, respectively, that f (n+1)(t) takes for t between x0 and x.

Then for each t between x0 and x, the integrand (x− t)nf (n+1)(t) must lie between (x− t)nm and (x− t)nM .

So En must lie between

1
n!

∫

x

x0

(x− t)nmdt = m

(n+1)! (x− x0)
n+1 and 1

n!

∫

x

x0

(x − t)nM dt = M

(n+1)! (x− x0)
n+1

That is,
En

1
(n+1)!(x − x0)n+1

must lie between m and M . Since f (n+1)(t) is continuous and takes the values m

and M for some t’s between x0 and x, f (n+1)(t) must take all values between m and M as t runs from x0 to x.

In particular there must exist a t∗ between x0 and x such that

f (n+1)(t∗) =
En

1
(n+1)! (x− x0)n+1

⇒ En = 1
(n+1)!f

(n+1)(t∗)(x− x0)
n+1

In conclusion, we have that

f(x) = f(x0) + f ′(x0)(x − x0) +
1
2!f

′′(x0)(x− x0)
2 + 1

3!f
(3)(x0)(x− x0)

3 + · · ·+ 1
n!f

(n)(x0)(x − x0)
n + En

with

En = 1
n!

∫

x

x0

(x− t)nf (n+1)(t) dt = 1
(n+1)!f

(n+1)(t∗)(x − x0)
n+1

for some t between x0 and x.
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Example

Let’s find all Taylor polyomial for sinx and cosx at x0 = 0. To do so, we merely need compute all

derivatives of sinx and cosx at x0 = 0. First, compute all derivatives at general x.

f(x) = sinx f ′(x) = cosx f ′′(x) = − sinx f (3)(x) = − cosx f (4)(x) = sinx · · ·

g(x) = cosx g′(x) = − sinx g′′(x) = − cosx g(3)(x) = sinx g(4)(x) = cosx · · ·

The pattern starts over again with the fourth derivative being the same as the original function. Now set

x = x0 = 0.

f(x) = sinx f(0) = 0 f ′(0) = 1 f ′′(0) = 0 f (3)(0) = −1 f (4)(0) = 0 · · ·

g(x) = cosx g(0) = 1 g′(0) = 0 g′′(0) = −1 g(3)(0) = 0 g(4)(0) = 1 · · ·

For sinx, all even numbered derivatives are zero. The odd numbered derivatives alternate between 1 and −1.

For cosx, all odd numbered derivatives are zero. The even numbered derivatives alternate between 1 and −1.

So, the Taylor polynomials that best approximate sinx and cosx near x = x0 = 0 are

sinx ≈ x− 1
3!x

3 + 1
5!x

5 − · · · cosx ≈ 1− 1
2!x

2 + 1
4!x

4 − · · ·

Note that all of our derivative formulae for trig functions were developed under the assumption that angles are

measured in radians. When applying these approximation formulae, which were developed using trig function

derivatives, we are obliged to express x in radians.

Here are graphs of sinx and its Taylor poynomials (about x0 = 0) up to degree seven.

sinx ≈ x sinx ≈ x− 1
3!x

3

sinx ≈ x− 1
3!x

3 + 1
5!x

5 sinx ≈ x− 1
3!x

3 + 1
5!x

5 − 1
7!x

7

Visually, we cannot distinguish between sinx and the approximation x− 1
3!x

3+ 1
5!x

5− 1
7!x

7 for |x| running from

0 almost to π.

Now imagine that we are designing a scientific pocket calculator. To have sin and cos buttons on the

calculator we need algorithms for computing sinx and cosx accurate to nine decimal places. Because sin and
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cos have period 2π, it suffices to consider −π ≤ x ≤ π. Because sin is odd and cos is even, it suffices to consider

0 ≤ x ≤ π. Because sin(π − x) = sinx and cos(π − x) = − cosx, it suffices to consider 0 ≤ x ≤ π

2 . Because

sin
(

π

2 − x
)

= cosx and cos
(

π

2 − x
)

= sinx, it suffices to consider 0 ≤ x ≤ π

4 . Using double angle formulae, it

is possible to cut down the range of x’s even further, but let’s stop here and design algorithms for computing

sinx and cosx accurate to nine decimal places when 0 ≤ x ≤ π

4 . We have already seen that every derivative of

f(x) = sinx and g(x) = cosx is either sinx or cosx or − sinx or − cosx. Thus every derivative of f(x) = sinx

and g(x) = cosx never has magnitude bigger than one. So applying the approximation (4) introduces an error

no large than Mn+1

(n+1)! |x−x0|
n+1 with Mn+1 = 1. When x0 = 0 and 0 ≤ x ≤ π

4 , the error is at most 1
(n+1)!

(

π

4

)n+1
.

Here is a table giving values of 1
(n+1)!

(

π

4

)n+1
(accurate to two significant digits) for various values of n.

n 5 6 7 8 9 10 11

1
(n+1)!

(

π

4

)n+1
3.3× 10−4 3.7× 10−5 3.6× 10−6 3.1× 10−7 2.5× 10−8 1.8× 10−9 1.2× 10−10

So applying the approximation (4) with n = 11 gives

sinx ≈ x− 1
3!x

3 + 1
5!x

5 − 1
7!x

7 + 1
9!x

9 − 1
11!x

11 cosx ≈ 1− 1
2!x

2 + 1
4!x

4 − 1
6!x

6 + 1
8!x

8 − 1
10!x

10

with errors that must be smaller than 1.2× 10−10 when 0 ≤ x ≤ π

4 .
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