Derivation of the Wave Equation

In these notes we apply Newton's law to an elastic string, concluding that small amplitude transverse vibrations of the string obey the wave equation. Consider a tiny element of the string.

The basic notation is
$u(x, t)=$ vertical displacement of the string from the x axis at position x and time t
$\theta(x, t)=$ angle between the string and a horizontal line at position x and time t
$T(x, t)=$ tension in the string at position x and time t
$\rho(x)=$ mass density of the string at position x
The forces acting on the tiny element of string are
(a) tension pulling to the right, which has magnitude $T(x+\Delta x, t)$ and acts at an angle $\theta(x+\Delta x, t)$ above horizontal
(b) tension pulling to the left, which has magnitude $T(x, t)$ and acts at an angle $\theta(x, t)$ below horizontal and, possibly,
(c) various external forces, like gravity. We shall assume that all of the external forces act vertically and we shall denote by $F(x, t) \Delta x$ the net magnitude of the external force acting on the element of string.
The mass of the element of string is essentially $\rho(x) \sqrt{\Delta x^{2}+\Delta u^{2}}$ so the vertical component of Newton's law says that

$$
\rho(x) \sqrt{\Delta x^{2}+\Delta u^{2}} \frac{\partial^{2} u}{\partial t^{2}}(x, t)=T(x+\Delta x, t) \sin \theta(x+\Delta x, t)-T(x, t) \sin \theta(x, t)+F(x, t) \Delta x
$$

Dividing by Δx and taking the limit as $\Delta x \rightarrow 0$ gives

$$
\begin{align*}
\rho(x) \sqrt{1+\left(\frac{\partial u}{\partial x}\right)^{2}} \frac{\partial^{2} u}{\partial t^{2}}(x, t) & =\frac{\partial}{\partial x}[T(x, t) \sin \theta(x, t)]+F(x, t) \tag{1}\\
& =\frac{\partial T}{\partial x}(x, t) \sin \theta(x, t)+T(x, t) \cos \theta(x, t) \frac{\partial \theta}{\partial x}(x, t)+F(x, t)
\end{align*}
$$

We can dispose of all the θ 's by observing from the figure that

$$
\tan \theta(x, t)=\lim _{\Delta x \rightarrow 0} \frac{\Delta u}{\Delta x}=\frac{\partial u}{\partial x}(x, t)
$$

which implies, using the figure on the right below, that

$$
\begin{aligned}
\sin \theta(x, t) & =\frac{\frac{\partial u}{\partial x}(x, t)}{\sqrt{1+\left(\frac{\partial u}{\partial x}(x, t)\right)^{2}}} & \cos \theta(x, t) & =\frac{1}{\sqrt{1+\left(\frac{\partial u}{\partial x}(x, t)\right)^{2}}}
\end{aligned}
$$

Substituting these formulae into (1) give a horrendous mess. However, we can get considerable simplification by looking only at small vibrations. By a small vibration, we mean that $|\theta(x, t)| \ll 1$ for all x and t. This implies that $|\tan \theta(x, t)| \ll 1$, hence that $\left|\frac{\partial u}{\partial x}(x, t)\right| \ll 1$ and hence that

$$
\begin{equation*}
\sqrt{1+\left(\frac{\partial u}{\partial x}\right)^{2}} \approx 1 \quad \sin \theta(x, t) \approx \frac{\partial u}{\partial x}(x, t) \quad \cos \theta(x, t) \approx 1 \quad \frac{\partial \theta}{\partial x}(x, t) \approx \frac{\partial^{2} u}{\partial x^{2}}(x, t) \tag{2}
\end{equation*}
$$

Substituting these into equation (1) give

$$
\begin{equation*}
\rho(x) \frac{\partial^{2} u}{\partial t^{2}}(x, t)=\frac{\partial T}{\partial x}(x, t) \frac{\partial u}{\partial x}(x, t)+T(x, t) \frac{\partial^{2} u}{\partial x^{2}}(x, t)+F(x, t) \tag{3}
\end{equation*}
$$

which is indeed relatively simple, but still exhibits a problem. This is one equation in the two unknowns u and T.

Fortunately there is a second equation lurking in the background, that we haven't used. Namely, the horizontal component of Newton's law of motion. As a second simplification, we assume that there are only transverse vibrations. Our tiny string element moves only vertically. Then the net horizontal force on it must be zero. That is,

$$
T(x+\Delta x, t) \cos \theta(x+\Delta x, t)-T(x, t) \cos \theta(x, t)=0
$$

Dividing by Δx and taking the limit as Δx tends to zero gives

$$
\frac{\partial}{\partial x}[T(x, t) \cos \theta(x, t)]=0
$$

For small amplitude vibrations, $\cos \theta$ is very close to one and $\frac{\partial T}{\partial x}(x, t)$ is very close to zero. In other words T is a function of t only, which is determined by how hard you are pulling on the ends of the string at time t. So for small, transverse vibrations, (3) simplifies further to

$$
\begin{equation*}
\rho(x) \frac{\partial^{2} u}{\partial t^{2}}(x, t)=T(t) \frac{\partial^{2} u}{\partial x^{2}}(x, t)+F(x, t) \tag{4}
\end{equation*}
$$

In the event that the string density ρ is a constant, independent of x, the string tension $T(t)$ is a constant independent of t (in other words you are not continually playing with the tuning pegs) and there are no external forces F we end up with

$$
\frac{\partial^{2} u}{\partial t^{2}}(x, t)=c^{2} \frac{\partial^{2} u}{\partial x^{2}}(x, t)
$$

where

$$
c=\sqrt{\frac{T}{\rho}}
$$

