A Lightning Fast Review of Eigenvalues and Eigenvectors

Let A be an $n \times n$ matrix. Then, by definition, \vec{v} is an eigenvector of A with eigenvalue λ if and only if

(i) $\vec{v} \neq \vec{0}$
(ii) $A\vec{v} = \lambda \vec{v}$

Fix λ for a moment. Then $(A - \lambda I)\vec{v} = \vec{0}$ has a nonzero solution \vec{v} if and only if the matrix $A - \lambda I$ fails to have an inverse. This, in turn, is the case if and only if the matrix has determinant zero. Hence the eigenvalues of A are determined by

$$
\det(A - \lambda I) = 0
$$

This determinant is a polynomial in λ of degree n. Consequently, it has precisely n roots, counting multiplicity. Given an eigenvalue λ of A the corresponding eigenvectors are found by solving

$$(A - \lambda I)\vec{v} = \vec{0}$$

Each distinct eigenvector has at least one eigenvector. If λ has multiplicity m then λ may have form 1 to m linearly independent eigenvectors.

Example 1 $A = \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix}$

$$
0 = \det(A - \lambda I) = \det \begin{pmatrix} 1 - \lambda & 2 \\ 1 & -\lambda \end{pmatrix} = \lambda^2 - \lambda - 2 = (\lambda - 2)(\lambda + 1)
$$

The eigenvalues of A are $\lambda = -1, 2$.

For $\lambda = -1$, \begin{pmatrix} 1 - \lambda & 2 \\ 1 & -\lambda \end{pmatrix} \vec{v} = 0 \implies \begin{pmatrix} 2 \\ 1 \end{pmatrix} \vec{v} = \vec{0} \implies \vec{v} = \text{const} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

For $\lambda = 2$, \begin{pmatrix} 1 - \lambda & 2 \\ 1 & -\lambda \end{pmatrix} \vec{v} = 0 \implies \begin{pmatrix} -1 & 2 \\ 1 & -2 \end{pmatrix} \vec{v} = \vec{0} \implies \vec{v} = \text{const} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$

Example 2 $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

$$
0 = \det(A - \lambda I) = \det \begin{pmatrix} 1 - \lambda & 1 & 1 \\ 0 & 1 - \lambda & 0 \\ 0 & 0 & 1 - \lambda \end{pmatrix} = (1 - \lambda)^3
$$

The eigenvalues of A are $\lambda = 1, 1, 1$. For $\lambda = 1$

$$
\begin{pmatrix} 1 - \lambda & 1 & 1 \\ 0 & 1 - \lambda & 0 \\ 0 & 0 & 1 - \lambda \end{pmatrix} \vec{v} = 0 \implies \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \vec{0} \implies v_2 + v_3 = 0
$$
which has general solution \(v_1 = \alpha \), arbitrary, \(v_3 = \beta \), arbitrary, and \(v_2 = -\beta \) or

\[
\vec{v} = \alpha \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}
\]

There are two linearly independent eigenvectors of eigenvalue 1, which can be chosen to be \(\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \), \(\begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} \).

Remarks

1) If \(A \) is \(2 \times 2 \), then \(\det(A - \lambda I) = \lambda^2 - (\text{tr} A)\lambda + \det A \).

If \(A \) is \(3 \times 3 \), then \(\det(A - \lambda I) = -\lambda^3 + (\text{tr} A)\lambda^2 - \left(\sum_{i=1}^{3} \det M_i \right) \lambda + \det A \).

Here \(\text{tr} A = \sum_{i=1}^{3} A_{ii} \) is the trace of \(A \) and \(M_i \) is the \(2 \times 2 \) matrix gotten by deleting the \(i^{\text{th}} \) row and column from \(A \).

2) If \(A \) is triangular (i.e. all entries on one side of the diagonal of \(A \) are zero) then the eigenvalues of \(A \) are just the diagonal entries of \(A \).

3) If \(A_{ij} = A_{ji} \) for all \(1 \leq i, j \leq n \), (such matrices are called symmetric, or Hermitian or self-adjoint) then all of the eigenvalues of \(A \) are real and \(A \) has \(n \) linearly independent eigenvectors (even if \(A \) has multiple eigenvalues).

4) Suppose that the \(n \times n \) matrix \(A \) has \(n \) linearly independent eigenvectors \(\vec{v}_i \) with corresponding eigenvalues \(\lambda_i \). Define \(V = (\vec{v}_1, \cdots, \vec{v}_n) \) (i.e. \(V \) is the matrix whose \(j^{\text{th}} \) column is \(\vec{v}_j \)) and define \(\Lambda \) to be the diagonal matrix whose \((j, j) \) entry is \(\lambda_j \). Then

\[
A \vec{v}_j = \lambda_j \vec{v}_j, \ 1 \leq j \leq n
\]

is equivalent to

\[
AV = A (\vec{v}_1, \cdots, \vec{v}_n) = (A \vec{v}_1, \cdots, A \vec{v}_n) = (\lambda_1 \vec{v}_1, \cdots, \lambda_n \vec{v}_n) = V \Lambda
\]

by the definition of matrix multiplication. Hence

\[
A = V \Lambda V^{-1} \quad V^{-1} AV = \Lambda
\]