A Compendium of Curve Formulae

In the following \(\mathbf{r}(t) = (x(t), y(t), z(t)) \) is a parametrization of a curve. The vectors \(\mathbf{T}(t), \mathbf{N}(t), \) and \(\mathbf{B}(t) = \mathbf{T}(t) \times \mathbf{N}(t) \) are the unit tangent, normal and binormal vectors, respectively, at \(\mathbf{r}(t) \). The tangent vector points in the direction of travel (i.e. direction of increasing \(t \)) and the normal vector points toward the centre of curvature. The arc length from time 0 to time \(t \) is denoted \(s(t) \). Then

- the velocity \(\mathbf{v}(t) = \frac{d\mathbf{r}}{dt}(t) = \frac{ds}{dt}(t) \mathbf{T}(t) \)
- the acceleration \(\mathbf{a}(t) = \frac{d^2\mathbf{r}}{dt^2}(t) = \frac{d^2s}{dt^2}(t) \mathbf{T}(t) + \kappa(t) \left(\frac{ds}{dt}(t) \right)^2 \mathbf{N}(t) \)
- the speed \(\frac{ds}{dt}(t) = |\mathbf{v}(t)| = |d\mathbf{r}/dt| \)
- the arc length \(s(t) = \int_0^1 \frac{ds}{dt}(\tau) \, d\tau = \int_0^1 \sqrt{x'(\tau)^2 + y'(\tau)^2 + z'(\tau)^2} \, d\tau \)
- the curvature \(\kappa(t) = \frac{|\mathbf{v}(t) \times \mathbf{a}(t)|}{(\frac{ds}{dt}(t))^3} \)
- the radius of curvature \(\rho(t) = \frac{1}{\kappa(t)} \)
- the centre of curvature is \(\mathbf{r}(t) + \rho(t) \mathbf{N}(t) \)
- the torsion \(\tau(t) = \frac{(\mathbf{v}(t) \times \mathbf{a}(t)) \cdot \frac{d\mathbf{a}}{dt}(t)}{|\mathbf{v}(t) \times \mathbf{a}(t)|^2} \)
- the binormal \(\hat{\mathbf{B}}(t) = \mathbf{T}(t) \times \mathbf{N}(t) = \frac{\mathbf{v}(t) \times \mathbf{a}(t)}{|\mathbf{v}(t) \times \mathbf{a}(t)|} \)

Under arc parametrization (i.e. if \(t = s \)) we have \(\hat{\mathbf{T}}(s) = \frac{d\mathbf{r}}{ds}(s) \) and the Frenet-Serret formulae

\[
\frac{d\mathbf{T}}{ds}(s) = \kappa(s) \mathbf{N}(s) \\
\frac{d\mathbf{N}}{ds}(s) = \tau(s) \mathbf{B}(s) - \kappa(s) \hat{\mathbf{T}}(s) \\
\frac{d\mathbf{B}}{ds}(s) = -\tau(s) \mathbf{N}(s)
\]

When the curve lies in the \(x-y \) plane

\[
\kappa(t) = \frac{|\frac{dx}{dt}(t) \frac{dy}{dt}(t) - \frac{dy}{dt}(t) \frac{dx}{dt}(t)|}{\left[(\frac{dx}{dt}(t))^2 + (\frac{dy}{dt}(t))^2 \right]^{3/2}}
\]

When the curve lies in the \(x-y \) plane and the parameter is \(x \) (so that \(y \) is given as a function \(y(x) \) of \(x \))

\[
\kappa(x) = \frac{|\frac{d^2y}{dx^2}(x)|}{\left[1 + \left(\frac{dy}{dx}(x) \right)^2 \right]^{3/2}}
\]