Errors in Measurement

The Question

Suppose that three variables are measured with percentage error \(\varepsilon_1 \), \(\varepsilon_2 \) and \(\varepsilon_3 \) respectively. In other words, if the measured value of variable number \(i \) is \(x_i \) and exact value of variable number \(i \) is \(x_i + \Delta x_i \) then

\[
100 \frac{\Delta x_i}{x_i} = \varepsilon_i
\]

Suppose further that a quantity \(P \) is then computed by taking the product of the three variables. So the measured value of \(P \) is

\[
P(x_1, x_2, x_3) = x_1 x_2 x_3
\]

What is the percentage error in this measured value of \(P \)?

The answer

The exact value of \(P \) is \(P(x_1 + \Delta x_1, x_2 + \Delta x_2, x_3 + \Delta x_3) \). So, the percentage error in \(P(x_1, x_2, x_3) \) is

\[
100 \frac{P(x_1 + \Delta x_1, x_2 + \Delta x_2, x_3 + \Delta x_3) - P(x_1, x_2, x_3)}{P(x_1, x_2, x_3)}
\]

We can get a much simpler approximate expression for this percentage error, which is good enough for virtually all applications, by applying

\[
P(x_1 + \Delta x_1, x_2 + \Delta x_2, x_3 + \Delta x_3) \\
\approx P(x_1, x_2, x_3) + P_{x_1}(x_1, x_2, x_3)\Delta x_1 + P_{x_2}(x_1, x_2, x_3)\Delta x_2 + P_{x_3}(x_1, x_2, x_3)\Delta x_3
\]

The three partial derivatives are

\[
P_{x_1}(x_1, x_2, x_3) = \frac{\partial}{\partial x_1}[x_1 x_2 x_3] = x_2 x_3
\]

\[
P_{x_2}(x_1, x_2, x_3) = \frac{\partial}{\partial x_2}[x_1 x_2 x_3] = x_1 x_3
\]

\[
P_{x_3}(x_1, x_2, x_3) = \frac{\partial}{\partial x_3}[x_1 x_2 x_3] = x_1 x_2
\]

So

\[
P(x_1 + \Delta x_1, x_2 + \Delta x_2, x_3 + \Delta x_3) \approx P(x_1, x_2, x_3) + 2 x_2 x_3 \Delta x_1 + x_1 x_3 \Delta x_2 + x_1 x_2 \Delta x_3
\]

and the (approximate) percentage error in \(P \) is

\[
100 \frac{P(x_1 + \Delta x_1, x_2 + \Delta x_2, x_3 + \Delta x_3) - P(x_1, x_2, x_3)}{P(x_1, x_2, x_3)} \\
\approx 100 \frac{2 x_2 x_3 \Delta x_1 + x_1 x_3 \Delta x_2 + x_1 x_2 \Delta x_3}{P(x_1, x_2, x_3)} \\
\approx 100 \frac{2 x_2 x_3 \Delta x_1 + x_1 x_3 \Delta x_2 + x_1 x_2 \Delta x_3}{x_1 x_2 x_3} \\
= x_1 + x_2 + x_3
\]

More generally, if we take a product of \(n \), rather than three, variables the percentage error in the product becomes (approximately)

\[
\sum_{i=1}^{n} \varepsilon_i
\]

This is the basis of the experimentalist’s rule of thumb that when you take products, percentage errors add.