MATHEMATICS 200 April 2014 Final Exam Solutions

1. Consider two planes W_1, W_2, and a line M defined by:

\[W_1 : -2x + y + z = 7, \quad W_2 : -x + 3y + 3z = 6, \quad M : \frac{x}{2} = \frac{2y - 4}{4} = z + 5. \]

(a) Find a parametric equation of the line of intersection L of W_1 and W_2.

(b) Find the distance from L to M.

(c) Find the area of the parallelogram on $W_2 (-x + 3y + 3z = 6)$ defined by $0 \leq x \leq 3, 0 \leq y \leq 2$.

Solution. (a) Let’s use z as the parameter and rename it to t. That is, $z = t$. Subtracting 2 times the W_2 equation from the W_1 equation gives

\[-5y - 5z = -5 \implies y = 1 - z = 1 - t\]

Substituting the result into the equation for W_2 gives

\[-x + 3(1 - t) + 3t = 6 \implies x = -3\]

So a parametric equation is

\[(x, y, z) = (-3, 1, 0) + t \langle 0, -1, 1 \rangle\]

(b) Solution 1

We can also parametrize M using $z = t$:

\[x = 2z + 10 = 2t + 10, \quad y = 2z + 12 = 2t + 12 \implies (x, y, z) = (10, 12, 0) + t \langle 2, 2, 1 \rangle\]

So one point on M is $(10, 12, 0)$ and one point on L is $(-3, 1, 0)$ and

\[v = \langle (-3) - (10), (1) - (12), 0 - 0 \rangle = \langle -13, -11, 0 \rangle\]

is one vector from a point on M to a point on L.

The direction vectors of L and M are $\langle 0, -1, 1 \rangle$ and $\langle 2, 2, 1 \rangle$, respectively. The vector

\[n = \langle 0, -1, 1 \rangle \times \langle 2, 2, 1 \rangle = \det \begin{bmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & -1 & 1 \\ 2 & 2 & 1 \end{bmatrix} = \langle -3, 2, 2 \rangle\]

is then perpendicular to both L and M.

The distance from L to M is then the length of the projection of v on n, which is

\[\frac{|v \cdot n|}{|n|} = \frac{|39 - 22 + 0|}{\sqrt{9 + 4 + 4}} = \sqrt{17}\]
(b) **Solution 2** We can also parametrize M using $z = s$:

$$x = 2z + 10 = 2s + 10, \quad y = 2z + 12 = 2s + 12 \quad \implies \quad (x, y, z) = (10, 12, 0) + s \langle 2, 2, 1 \rangle$$

The vector from the point $(-3, 1, 0) + t \langle 0, -1, 1 \rangle$ on L to the point $(10, 12, 0) + s \langle 2, 2, 1 \rangle$ on M is

$$\langle 13 + 2s, 11 + 2s + t, s - t \rangle$$

So the distance from the point $(-3, 1, 0) + t \langle 0, -1, 1 \rangle$ on L to the point $(10, 12, 0) + s \langle 2, 2, 1 \rangle$ on M is the square root of

$$D(s, t) = (13 + 2s)^2 + (11 + 2s + t)^2 + (s - t)^2$$

That distance is minimized when

$$0 = \frac{\partial D}{\partial s} = 4(13 + 2s) + 4(11 + 2s + t) + 2(s - t)$$

$$0 = \frac{\partial D}{\partial t} = 2(11 + 2s + t) - 2(s - t)$$

Cleaning up those equations gives

$$18s + 2t = -96$$

$$2s + 4t = -22$$

or

$$9s + t = -48 \quad \text{(E1)}$$

$$s + 2t = -11 \quad \text{(E2)}$$

Subtracting (E2) from twice (E1) gives

$$17s = -85 \implies s = -5$$

Substituting that into (E2) gives

$$2t = -11 + 5 \implies t = -3$$

Note that

$$13 + 2s = 3$$

$$11 + 2s + t = -2$$

$$s - t = -2$$

So the distance is

$$\sqrt{D(-5, -3)} = \sqrt{3^2 + (-2)^2 + (-2)^2} = \sqrt{17}$$
(c) Note that

- the point on W_2 with $x = 0, y = 0$ obeys $-0 + 3(0) + 3z = 6$ and so has $z = 2$
- the point on W_2 with $x = 0, y = 2$ obeys $-0 + 3(2) + 3z = 6$ and so has $z = 0$
- the point on W_2 with $x = 3, y = 0$ obeys $-3 + 3(0) + 3z = 6$ and so has $z = 3$
- the point on W_2 with $x = 3, y = 2$ obeys $-3 + 3(2) + 3z = 6$ and so has $z = 1$

So the four corners of the parallelogram are $(0, 0, 2), (0, 2, 0), (3, 0, 3)$ and $(3, 2, 1)$. The vectors

\[
\mathbf{d}_1 = \langle 0 - 0, 2 - 0, 0 - 2 \rangle = \langle 0, 2, -2 \rangle
\]

\[
\mathbf{d}_2 = \langle 3 - 0, 0 - 0, 3 - 2 \rangle = \langle 3, 0, 1 \rangle
\]

form two sides of the parallelogram. So the area of the parallelogram is

\[
|\mathbf{d}_1 \times \mathbf{d}_2| = \left| \begin{vmatrix} i & j & \mathbf{k} \\ 0 & 2 & -2 \\ 3 & 0 & 1 \end{vmatrix} \right| = \left| 2\mathbf{i} - 6\mathbf{j} - 6\mathbf{k} \right| = \sqrt{76} = 2\sqrt{19}
\]

2. Let the pressure P and temperature T at a point (x, y, z) be

\[
P(x, y, z) = \frac{x^2 + 2y^2}{1 + z^2}, \quad T(x, y, z) = 5 + xy - z^2
\]

(a) If the position of an airplane at time t is

\[
(x(t), y(t), z(t)) = (2t, t^2 - 1, \cos t)
\]

find $\frac{d}{dt}(PT)^2$ at time $t = 0$ as observed from the airplane.

(b) In which direction should a bird at the point $(0, -1, 1)$ fly if it wants to keep both P and T constant. (Give one possible direction vector. It does not need to be a unit vector.)

(c) An ant crawls on the surface $z^3 + zx + y^2 = 2$. When the ant is at the point $(0, -1, 1)$, in which direction should it go for maximum increase of the temperature $T = 5 + xy - z^2$? Your answer should be a vector $\langle a, b, c \rangle$, not necessarily of unit length. (Note that the ant cannot crawl in the direction of the gradient because that leads off the surface. The direction vector $\langle a, b, c \rangle$ has to be on the tangent plane to the surface.)

Solution. Reading through the question as a whole we see that we will need

- for part (a), the gradient of PT at $(2t, t^2 - 1, \cos t)|_{t=0} = (0, -1, 1)$
- for part (b), the gradients of both P and T at $(0, -1, 1)$ and
• for part (c), the gradient of T at $(0, -1, 1)$ and the gradient of $S = z^3 + xz + y^2$ at $(0, -1, 1)$ (to get the normal vector to the surface at that point).

So, by way of preparation, let’s compute all of these gradients.

$$\nabla P(x, y, z) = \frac{2x}{1 + z^2}i + \frac{4y}{1 + z^2}j - \frac{(x^2 + 2y^2)2z}{(1 + z^2)^2}k \quad \nabla P(0, -1, 1) = -2j - \hat{k}$$
$$\nabla T(x, y, z) = y\hat{i} + x\hat{j} - 2z\hat{k} \quad \nabla T(0, -1, 1) = -\hat{i} - 2\hat{k}$$
$$\nabla S(x, y, z) = z\hat{i} + 2y\hat{j} + (x + 3z^2)\hat{k} \quad \nabla S(0, -1, 1) = \hat{i} - 2\hat{j} + 3\hat{k}$$

To get the gradient of PT we use the product rule

$$\nabla (PT)(x, y, z) = T(x, y, z)\nabla P(x, y, z) + P(x, y, z)\nabla T(x, y, z)$$

so that

$$\nabla (PT)(0, -1, 1) = T(0, -1, 1)\nabla P(0, -1, 1) + P(0, -1, 1)\nabla T(0, -1, 1)$$

$$= (5 + 0 - 1)(-2\hat{j} - \hat{k}) + \frac{0 + 2}{1 + 1}(-\hat{i} - 2\hat{k})$$

$$= -\hat{i} - 8\hat{j} - 6\hat{k}$$

(a) Since \(\frac{d}{dt}(PT)^2 = 2(PT)\frac{d}{dt}(PT)\), and the velocity vector of the plane at time 0 is

$$\frac{d}{dt} \left(2t, t^2 - 1, \cos t \right) \bigg|_{t=0} = \left(2, 2t, -\sin t \right) \bigg|_{t=0} = \langle 2, 0, 0 \rangle$$

we have

$$\frac{d}{dt} \left(PT \right)^2 \bigg|_{t=0} = 2P(0, -1, 1)T(0, -1, 1) \nabla (PT)(0, -1, 1) \cdot \langle 2, 0, 0 \rangle$$

$$= 2 \frac{0 + 2}{1 + 1} (5 + 0 - 1) \langle -1, -8, -6 \rangle \cdot \langle 2, 0, 0 \rangle$$

$$= -16$$

(b) The direction should be perpendicular to $\nabla P(0, -1, 1)$ (to keep P constant) and should also be perpendicular to $\nabla T(0, -1, 1)$ (to keep T constant). So any nonzero constant times

$$\pm \nabla P(0, -1, 1) \times \nabla T(0, -1, 1) = \pm \langle 0, -2, -1 \rangle \times \langle -1, 0, -2 \rangle = \pm \det \begin{bmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 2 & 1 \\ 1 & 0 & 2 \end{bmatrix}$$

$$= \pm \langle 4, 1, -2 \rangle$$

are allowed directions.

(c) We want the direction to be as close as possible to $\nabla T(0, -1, 1) = \langle -1, 0, -2 \rangle$ while still being tangent to the surface, i.e. being perpendicular to the normal vector $\nabla S(0, -1, 1) = \langle 1, -2, 3 \rangle$. We can get that optimal direction by subtracting from $\nabla T(0, -1, 1)$ the projection of $\nabla T(0, -1, 1)$ onto the normal vector.
The projection of $\nabla T(0, -1, 1)$ onto the normal vector $\nabla S(0, -1, 1)$ is

$$\text{proj}_{\nabla S(0, -1, 1)} \nabla T(0, -1, 1) = \frac{\nabla T(0, -1, 1) \cdot \nabla S(0, -1, 1)}{|\nabla S(0, -1, 1)|^2} \nabla S(0, -1, 1)$$

$$= \frac{\langle -1, 0, -2 \rangle \cdot \langle 1, -2, 3 \rangle}{|\langle 1, -2, 3 \rangle|^2} \langle 1, -2, 3 \rangle$$

$$= -\frac{7}{14} \langle 1, -2, 3 \rangle$$

So the optimal direction is

$$d = \nabla T(0, -1, 1) - \text{proj}_{\nabla S(0, -1, 1)} \nabla T(0, -1, 1)$$

$$= \langle -1, 0, -2 \rangle - -\frac{7}{14} \langle 1, -2, 3 \rangle$$

$$= \langle -\frac{1}{2}, -1, -\frac{1}{2} \rangle$$

So any positive non zero multiple of $-\langle 1, 2, 1 \rangle$ will do. Note, as a check, that $-\langle 1, 2, 1 \rangle$ has dot product zero, i.e. is perpendicular to, $\nabla S(0, -1, 1) = \langle 1, -2, 3 \rangle$.

3. Consider the function

$$f(x, y) = 3kx^2y + y^3 - 3x^2 - 3y^2 + 4$$

where $k > 0$ is a constant. Find and classify all critical points of $f(x, y)$ as local minima, local maxima, saddle points or points of indeterminate type. Carefully distinguish the cases $k < \frac{1}{2}$, $k = \frac{1}{2}$ and $k > \frac{1}{2}$.

Solution. To find the critical points we will need the gradient of f and to apply the second derivative test of Theorem 2.9.16 in the CLP–III text we will need all second order
partial derivatives. So we need all partial derivatives of \(f \) up to order two. Here they are.

\[
\begin{align*}
 f &= 3kx^2y + y^3 - 3x^2 - 3y^2 + 4 \\
 f_x &= 6kxy - 6x \\
 f_y &= 3kx^2 + 3y^2 - 6y \\
 f_{xx} &= 6ky - 6 \\
 f_{yy} &= 6y - 6 \\
 f_{xy} &= 6kx
\end{align*}
\]

(Of course, \(f_{xy} \) and \(f_{yx} \) have to be the same. It is still useful to compute both, as a way to catch some mechanical errors.)

The critical points are the solutions of

\[
\begin{align*}
 f_x &= 6x(ky - 1) = 0 \\
 f_y &= 3kx^2 + 3y^2 - 6y = 0
\end{align*}
\]

The first equation is satisfied if at least one of \(x = 0 \), \(y = 1/k \) are satisfied. (Recall that \(k > 0 \).)

- If \(x = 0 \), the second equation reduces to \(3y(y - 2) = 0 \), which is satisfied if either \(y = 0 \) or \(y = 2 \).
- If \(y = 1/k \), the second equation reduces to \(3kx^2 + \frac{3}{k^2} - \frac{6}{k} = 3kx^2 + \frac{3}{k^2}(1 - 2k) = 0 \).

Case \(k < \frac{1}{2} \): If \(k < \frac{1}{2} \), then \(\frac{3}{k^2}(1 - 2k) > 0 \) and the equation \(3kx^2 + \frac{3}{k^2}(1 - 2k) = 0 \) has no real solutions. In this case there are two critical points: \((0,0), (0,2)\) and the classification is

<table>
<thead>
<tr>
<th>critical point</th>
<th>(f_{xx}f_{yy} - f_{xy}^2)</th>
<th>(f_{xx})</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0)</td>
<td>((-6) \times (-6) - (0)^2 > 0)</td>
<td>(-6)</td>
<td>local max</td>
</tr>
<tr>
<td>(0,2)</td>
<td>((12k - 6) \times 6 - (0)^2 < 0)</td>
<td></td>
<td>saddle point</td>
</tr>
</tbody>
</table>

Case \(k = \frac{1}{2} \): If \(k = \frac{1}{2} \), then \(\frac{3}{k^2}(1 - 2k) = 0 \) and the equation \(3kx^2 + \frac{3}{k^2}(1 - 2k) = 0 \) reduces to \(3kx^2 = 0 \) which has as its only solution \(x = 0 \). We have already seen this third critical point, \(x = 0, y = 1/k = 2 \). So there are again two critical points: \((0,0), (0,2)\) and the classification is

<table>
<thead>
<tr>
<th>critical point</th>
<th>(f_{xx}f_{yy} - f_{xy}^2)</th>
<th>(f_{xx})</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0)</td>
<td>((-6) \times (-6) - (0)^2 > 0)</td>
<td>(-6)</td>
<td>local max</td>
</tr>
<tr>
<td>(0,2)</td>
<td>((12k - 6) \times 6 - (0)^2 = 0)</td>
<td></td>
<td>unknown</td>
</tr>
</tbody>
</table>

Case \(k > \frac{1}{2} \): If \(k > \frac{1}{2} \), then \(\frac{3}{k^2}(1 - 2k) < 0 \) and the equation \(3kx^2 + \frac{3}{k^2}(1 - 2k) = 0 \) reduces to \(3kx^2 = \frac{3}{k^2}(2k - 1) \) which has two solutions, namely \(x = \pm \frac{1}{k} \sqrt{(2k - 1)} \). So there are four critical points: \((0,0), (0,2), \left(\sqrt{\frac{1}{k^2}(2k - 1)}, \frac{1}{k}\right) \) and \(\left(-\sqrt{\frac{1}{k^2}(2k - 1)}, \frac{1}{k}\right) \) and the classification is
4. Find the largest and smallest values of

\[f(x, y, z) = 6x + y^2 + xz \]

on the sphere \(x^2 + y^2 + z^2 = 36 \). Determine all points at which these values occur.

Solution 1. This is a constrained optimization problem with objective function \(f(x, y, z) = 6x + y^2 + xz \) and constraint function \(g(x, y, z) = x^2 + y^2 + z^2 - 36 \). By Theorem 2.10.2 in the CLP–III text, any local minimum or maximum \((x, y, z)\) must obey the Lagrange multiplier equations

\[
\begin{align*}
 f_x &= 6 + z = 2\lambda x = \lambda g_x \\
 f_y &= 2y = 2\lambda y = \lambda g_y \\
 f_z &= x = 2\lambda z = \lambda g_z \\
 x^2 + y^2 + z^2 &= 36
\end{align*}
\]

for some real number \(\lambda \). By equation (E2), \(y(1 - \lambda) = 0 \), which is obeyed if and only if at least one of \(y = 0 \), \(\lambda = 1 \) is obeyed.

- If \(y = 0 \), the remaining equations reduce to

\[
\begin{align*}
 6 + z &= 2\lambda x \\
 x &= 2\lambda z \\
 x^2 + z^2 &= 36
\end{align*}
\]

Substituting (E3) into (E1) gives \(6 + z = 4\lambda^2 z \), which forces \(4\lambda^2 \neq 1 \) (since \(6 \neq 0 \)) and gives \(z = \frac{6}{4\lambda^2 - 1} \) and then \(x = \frac{12\lambda}{4\lambda^2 - 1} \). Substituting this into (E4) gives

\[
\frac{144\lambda^2}{(4\lambda^2 - 1)^2} + \frac{36}{(4\lambda^2 - 1)^2} = 36
\]

\[
\frac{4\lambda^2}{(4\lambda^2 - 1)^2} + \frac{1}{(4\lambda^2 - 1)^2} = 1
\]

\[
4\lambda^2 + 1 = (4\lambda^2 - 1)^2
\]
Write $\mu = 4\lambda^2$. Then this last equation is

$$\mu + 1 = \mu^2 - 2\mu + 1 \iff \mu^2 - 3\mu = 0 \iff \mu = 0, 3$$

When $\mu = 0$, we have $z = \frac{6}{\mu - 1} = -6$ and $x = 0$ (by (E4)). When $\mu = 3$, we have $z = \frac{6}{\mu - 1} = 3$ and then $x = \pm\sqrt{27} = \pm3\sqrt{3}$ (by (E4)).

- If $\lambda = 1$, the remaining equations reduce to

 $$6 + z = 2x \quad (E1)$$
 $$x = 2z \quad (E3)$$
 $$x^2 + y^2 + z^2 = 36 \quad (E4)$$

 Substituting (E3) into (E1) gives $6 + z = 4z$ and hence $z = 2$. Then (E3) gives $x = 4$ and (E4) gives $4^2 + y^2 + 2^2 = 36$ or $y^2 = 16$ or $y = \pm 4$.

 So we have the following candidates for the locations of the min and max

<table>
<thead>
<tr>
<th>point</th>
<th>(0, 0, -6)</th>
<th>(3\sqrt{3}, 0, 3)</th>
<th>(-3\sqrt{3}, 0, 3)</th>
<th>(4, 4, 2)</th>
<th>(4, -4, 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>value of f</td>
<td>0</td>
<td>27\sqrt{3}</td>
<td>-27\sqrt{3}</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>max</td>
<td>max</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Solution 2. On the sphere we have $y^2 = 36 - x^2 - z^2$ and hence $f = 36 + 6x + xz - x^2 - z^2$ and $x^2 + z^2 \leq 36$. So it suffices to find the max and min of $h(x, z) = 36 + 6x + xz - x^2 - z^2$ on the disk $D = \{(x, z) \mid x^2 + z^2 \leq 36\}$.

- If a max or min occurs at an interior point (x, z) of D, then (x, z) must be a critical point of h and hence must obey

 $$h_x = 6 + z - 2x = 0$$
 $$h_z = x - 2z = 0$$

 Substituting $x = 2z$ into the first equation gives $6 - 3z = 0$ and hence $z = 2$ and $x = 4$.

- If a max or min occurs at a point (x, z) on the boundary of D, we have $x^2 + z^2 = 36$ and hence $x = \pm\sqrt{36 - z^2}$ and $h = 6x + xz = \pm(6 + z)\sqrt{36 - z^2}$ with $-6 \leq z \leq 6$. So the max or min can occur either when $z = -6$ or $z = +6$ or at a z obeying

$$0 = \frac{d}{dz}[(6 + z)\sqrt{36 - z^2}] = \sqrt{36 - z^2} - \frac{z(6 + z)}{\sqrt{36 - z^2}}$$
or equivalently

\[36 - z^2 - z(6 + z) = 0 \]
\[2z^2 + 6z - 36 = 0 \]
\[z^2 + 3z - 18 = 0 \]
\[(z + 6)(z - 3) = 0 \]

So the max or min can occur either when \(z = \pm 6 \) or \(z = 3 \).

So we have the following candidates for the locations of the min and max

<table>
<thead>
<tr>
<th>point</th>
<th>(0,0,±6)</th>
<th>(3(\sqrt{3}),0,3)</th>
<th>(−3(\sqrt{3}),0,3)</th>
<th>(4,4,2)</th>
<th>(4,−4,2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>value of f</td>
<td>0</td>
<td>27(\sqrt{3})</td>
<td>−27(\sqrt{3})</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>max</td>
<td>max</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. Let \(D \) be the region in the \(xy \)–plane bounded on the left by the line \(x = 2 \) and on the right by the circle \(x^2 + y^2 = 16 \). Evaluate

\[
\iint_D (x^2 + y^2)^{-3/2} \, dA
\]

Solution. Here is a sketch of \(D \).

We’ll use polar coordinates. In polar coordinates the circle \(x^2 + y^2 = 16 \) is \(r = 4 \) and the line \(x = 2 \) is \(r \cos \theta = 2 \). So

\[
D = \left\{ (r \cos \theta , r \sin \theta) \mid -\frac{\pi}{3} \leq \theta \leq \frac{\pi}{3} , \quad \frac{2}{\cos \theta} \leq r \leq 4 \right\}
\]
and, as $dA = r \, dr \, d\theta$, the specified integral is

\[
\int\int_D (x^2 + y^2)^{-3/2} \, dA = \int_{-\pi/3}^{\pi/3} d\theta \int_{2/\cos\theta}^4 dr \, \frac{r^1}{r^3}
\]

\[
= \int_{-\pi/3}^{\pi/3} d\theta \left[-\frac{1}{r} \right]_{2/\cos\theta}^4
\]

\[
= \int_{-\pi/3}^{\pi/3} d\theta \left[\frac{\cos \theta}{2} - \frac{1}{4} \right]
\]

\[
= \left[\frac{\sin \theta}{2} - \frac{\theta^{\pi/3}}{4} \right]_{-\pi/3}
\]

\[
= \frac{\sqrt{3}}{2} - \frac{\pi}{6}
\]

6. (a) Let

\[I = \int_0^2 \int_0^x f(x, y) \, dy \, dx + \int_2^6 \int_0^{\sqrt{6-x}} f(x, y) \, dy \, dx \]

Express I as an integral where we integrate first with respect to x.

(b) Let

\[J = \int_0^1 \int_0^y \int_0^{\sqrt{6-x}} f(x, y, z) \, dz \, dy \, dx \]

Express J as an integral where the integrations are to be performed in the order x first, then y, then z.

Solution. (a) We first have to get a picture of the domain of integration. The first integral has domain of integration

\[\{ (x, y) \mid 0 \leq x \leq 2, \ 0 \leq y \leq x \} \]

and the second integral has domain of integration

\[\{ (x, y) \mid 2 \leq x \leq 6, \ 0 \leq y \leq \sqrt{6-x} \} \]

Here is a sketch. The domain of integration for the first integral is the shaded triangular region to the left of $x = 2$ and the domain of integration for the second integral is the shaded region to the right of $x = 2$.
To exchange the order of integration, we use horizontal slices as in the figure below.

The bottom slice has $y = 0$ and the top slice has $y = 2$. On the slice at height y, x runs from y to $6 - y^2$. So

$$I = \int_0^2 \int_y^{6-y^2} f(x, y) \, dx \, dy$$

(b) In the integral J,

- x runs from 0 to 1. In inequalities, $0 \leq x \leq 1$.
- Then, for each fixed x in that range, y runs from 0 to x. In inequalities, $0 \leq y \leq x$.
- Then, for each fixed x and y in those ranges, z runs from 0 to y. In inequalities, $0 \leq z \leq y$.

These inequalties can be combined into

$$0 \leq z \leq y \leq x \leq 1 \quad (*)$$

We wish to reverse the order of integration so that the z–integral is on the outside, the y–integral is in the middle and the x–integral is on the inside.
• The smallest z compatible with (\ast) is $z = 0$ and the largest z compatible with (\ast) is $z = 1$ (when $x = y = z = 1$). So $0 \leq z \leq 1$.

• Then, for each fixed z in that range, (x, y) run over $z \leq y \leq x \leq 1$. In particular, the smallest allowed y is $y = z$ and the largest allowed y is $y = 1$ (when $x = y = 1$). So $z \leq y \leq 1$.

• Then, for each fixed y and z in those ranges, x runs over $y \leq x \leq 1$.

\[J = \int_0^1 \int_z^1 \int_y^1 f(x, y, z) \, dx \, dy \, dz \]

7. Let E be the solid lying above the surface $z = y^2$ and below the surface $z = 4 - x^2$.

Evaluate \[\iiint_E y^2 \, dV \]

Hint: you may need to use the half angle formulas:

\[
\sin^2 \theta = \frac{1 - \cos(2\theta)}{2}, \quad \cos^2 \theta = \frac{1 + \cos(2\theta)}{2}
\]

Solution. Note that the surfaces meet when $z = y^2 = 4 - x^2$ and then (x, y) runs over the circle $x^2 + y^2 = 4$. So the domain of integration is

\[E = \{ (x, y, z) \mid x^2 + y^2 \leq 4, \ y^2 \leq z \leq 4 - x^2 \} \]

Let’s switch to cylindrical coordinates. Then

\[E = \{ (r \cos \theta, r \sin \theta, z) \mid 0 \leq r \leq 2, \ 0 \leq \theta \leq 2\pi, \ r^2 \sin^2 \theta \leq z \leq 4 - r^2 \cos^2 \theta \} \]

and, since $dV = r \, dr \, d\theta \, dz$,

\[
\begin{align*}
\iiint_E y^2 \, dV &= \int_0^2 dr \int_0^{2\pi} d\theta \int_{r^2 \sin^2 \theta}^{4 - r^2 \cos^2 \theta} dz \ r \ r^2 \sin^2 \theta \\
&= \int_0^2 dr \int_0^{2\pi} d\theta \ r^3 \sin^2 \theta \left[4 - r^2 \cos^2 \theta - r^2 \sin^2 \theta \right] \\
&= \int_0^2 dr \ [4r^3 - r^5] \int_0^{2\pi} d\theta \ \frac{1 - \cos(2\theta)}{2} \\
&= \frac{1}{2} \int_0^2 dr \ [4r^3 - r^5] \left[\theta - \frac{\sin(2\theta)}{2} \right]_0^{2\pi} \\
&= \pi \left[r^4 - \frac{r^6}{6} \right]_0^2 \\
&= \frac{16\pi}{3}
\end{align*}
\]
For an efficient, sneaky, way to evaluate $\int_0^{2\pi} \sin^2 \theta \, d\theta$, see Remark 3.3.5 in the CLP–III text.

8. Let E be the solid

$$0 \leq z \leq \sqrt{x^2 + y^2}, \quad x^2 + y^2 \leq 1,$$

and consider the integral

$$I = \iiint_E z \sqrt{x^2 + y^2 + z^2} \, dV.$$

(a) Write the integral I in cylindrical coordinates.

(b) Write the integral I in spherical coordinates.

(c) Evaluate the integral I using either form.

Solution. (a) In cylindrical coordinates $0 \leq z \leq \sqrt{x^2 + y^2}$ becomes $0 \leq z \leq r$, and $x^2 + y^2 \leq 1$ becomes $0 \leq r \leq 1$. So

$$E = \{ (r \cos \theta, r \sin \theta, z) \mid 0 \leq r \leq 1, \ 0 \leq \theta \leq 2\pi, \ 0 \leq z \leq r \}$$

and, since $dV = r \, dr \, d\theta \, dz$,

$$I = \iiint_E z \sqrt{x^2 + y^2 + z^2} \, dV = \int_0^1 \int_0^{2\pi} \int_0^r z \sqrt{r^2 + z^2} \, dr \, d\theta \, dz.$$

(b) Here is a sketch of a constant θ section of E.

Recall that the spherical coordinate φ is the angle between the z–axis and the radius vector. So, in spherical coordinates $z = r$ (which makes an angle $\frac{\pi}{4}$ with the z axis) becomes $\varphi = \frac{\pi}{4}$, and the plane $z = 0$, i.e. the xy–plane, becomes $\varphi = \frac{\pi}{2}$, and $r = 1$ becomes $\rho \sin \varphi = 1$. So

$$E = \left\{ (\rho \sin \varphi \cos \theta, \rho \sin \varphi \sin \theta, \rho \cos \varphi) \left| \frac{\pi}{4} \leq \varphi \leq \frac{\pi}{2}, \ 0 \leq \theta \leq 2\pi, \ 0 \leq \rho \leq \frac{1}{\sin \varphi} \right. \right\}$$
and, since $dV = \rho^2 \sin \varphi \, d\rho \, d\theta \, d\varphi$,

$$I = \iiint_E z \sqrt{x^2 + y^2 + z^2} \, dV = \int_{\pi/4}^{\pi/2} d\varphi \int_0^{2\pi} d\theta \int_0^{1/\sin \varphi} d\rho \, \rho^2 \sin \varphi \, \rho \cos \varphi \, \rho$$

$$= \int_{\pi/4}^{\pi/2} d\varphi \int_0^{2\pi} d\theta \int_0^{1/\sin \varphi} d\rho \, \rho^4 \sin \varphi \cos \varphi$$

(c) We’ll integrate using the spherical coordinate version.

$$I = \int_{\pi/4}^{\pi/2} d\varphi \int_0^{2\pi} d\theta \int_0^{1/\sin \varphi} d\rho \, \rho^4 \sin \varphi \cos \varphi$$

$$= \int_{\pi/4}^{\pi/2} d\varphi \int_0^{2\pi} d\theta \frac{1}{5 \sin^5 \varphi} \sin \varphi \cos \varphi$$

$$= \frac{2\pi}{5} \int_{\pi/4}^{\pi/2} d\varphi \frac{\cos \varphi}{\sin^4 \varphi}$$

$$= \frac{2\pi}{5} \int_{1/\sqrt{2}}^1 \frac{du}{u^4} \quad \text{with} \ u = \sin \varphi, \ du = \cos \varphi \, d\varphi$$

$$= \frac{2\pi}{5} \left[\frac{u^{-3}}{-3} \right]_{1/\sqrt{2}}^1$$

$$= \frac{2(2\sqrt{2} - 1)\pi}{15}$$