MATHEMATICS 200 December 2015 Final Exam

1. (a) Consider the plane $4x + 2y - 4z = 3$. Find all parallel planes that are distance 2 from the above plane. Your answers should be in the following form: $4x + 2y - 4z = C$.
(b) Find the parametric equation for the line of intersection of the planes

$$x + y + z = 11 \quad \text{and} \quad x - y - z = 13.$$

(c) Find the tangent plane to $$\frac{27}{\sqrt{x^2 + y^2 + z^2 + 3}} = 9$$ at the point $(2, 1, 1)$.

2. A function $T(x, y, z)$ at $P = (2, 1, 1)$ is known to have $T(P) = 5$, $T_x(P) = 1$, $T_y(P) = 2$, and $T_z(P) = 3$.
 (a) A bee starts flying at P and flies along the unit vector pointing towards the point $Q = (3, 2, 2)$. What is the rate of change of $T(x, y, z)$ in this direction?
 (b) Use the linear approximation of T at the point P to approximate $T(1.9, 1, 1.2)$.
 (c) Let $S(x, y, z) = x + z$. A bee starts flying at P, along which unit vector direction should the bee fly so that the rate of change of $T(x, y, z)$ and of $S(x, y, z)$ are both zero in this direction?

3. Let $w(s, t) = u(2s + 3t, 3s - 2t)$ for some twice differentiable function $u = u(x, y)$.
 (a) Find w_{ss} in terms of u_{xx}, u_{xy}, and u_{yy} (you can assume that $u_{xy} = u_{yx}$).
 (b) Suppose $u_{xx} + u_{yy} = 0$. For what constant A will $w_{ss} = Aw_{tt}$?

4. Find and classify the critical points of $f(x, y) = 3x^2y + y^3 - 3x^2 - 3y^2 + 4$.

5. Use Lagrange multipliers to find the minimum and maximum values of $(x + z)e^y$ subject to $x^2 + y^2 + z^2 = 6$.

6. Consider the domain D above the x–axis and below parabola $y = 1 - x^2$ in the xy–plane.
 (a) Sketch D.
 (b) Express $$\int\int_D f(x, y) \, dA$$ as an iterated integral corresponding to the order $dx \, dy$. Then express this integral as an iterated integral corresponding to the order $dy \, dx$.
 (c) Compute the integral in the case $f(x, y) = e^{x-(x^2/3)}$.

\[1\]
7. Let \(E \) be the region inside the cylinder \(x^2 + y^2 = 1 \), below the plane \(z = y \) and above the plane \(z = -1 \). Express the integral

\[
\iiint_E f(x, y, z) \, dV
\]

as three different iterated integrals corresponding to the orders of integration: (a) \(dz \, dx \, dy \), (b) \(dx \, dy \, dz \), and (c) \(dy \, dz \, dx \).

8. The solid \(E \) is bounded below by the paraboloid \(z = x^2 + y^2 \) and above by the cone \(z = \sqrt{x^2 + y^2} \). Let

\[
I = \iiint_E z(x^2 + y^2 + z^2) \, dV
\]

(a) Write \(I \) in terms of cylindrical coordinates. Do not evaluate.
(b) Write \(I \) in terms of spherical coordinates. Do not evaluate.
(c) Calculate \(I \).