1. Let \(L \) be a line which is parallel to the plane \(2x + y - z = 5 \) and perpendicular to the line \(x = 3 - t, y = 1 - 2t \) and \(z = 3t \).

(a) Find a vector parallel to the line \(L \).

(b) Find parametric equations for the line \(L \) if \(L \) passes through a point \(Q(a, b, c) \) where \(a < 0, b > 0, c > 0 \), and the distances from \(Q \) to the \(xy \)-plane, the \(xz \)-plane and the \(yz \)-plane are 2, 3 and 4 respectively.

2. Let \(z = f(x, y) = \ln(4x^2 + y^2) \).

(a) Use a linear approximation of the function \(z = f(x, y) \) at \((0, 1) \) to estimate \(f(0.1, 1.2) \).

(b) Find a point \(P(a, b, c) \) on the graph of \(z = f(x, y) \) such that the tangent plane to the graph of \(z = f(x, y) \) at the point \(P \) is parallel to the plane \(2x + 2y - z = 3 \).

3. Let \(z = f(x, y) \), where \(f(x, y) \) has continuous second-order partial derivatives, and

\[
\begin{align*}
 f_x(2, 1) &= 5, & f_y(2, 1) &= -2, & f_{xx}(2, 1) &= 2, & f_{xy}(2, 1) &= 1, & f_{yy}(2, 1) &= -4
\end{align*}
\]

Find \(\frac{d^2}{dx^2}z(x(t), y(t)) \) when \(x(t) = 2t^2, y(t) = t^3 \) and \(t = 1 \).

4. The temperature at a point \((x, y, z)\) is given by \(T(x, y, z) = 5e^{-2x^2 - y^2 - 3z^2} \), where \(T \) is measured in centigrade and \(x, y, z \) in meters.

(a) Find the rate of change of temperature at the point \(P(1, 2, -1) \) in the direction toward the point \((1, 1, 0)\).

(b) In which direction does the temperature decrease most rapidly?

(c) Find the maximum rate of decrease at \(P \).

5. Let \(C \) be the intersection of the plane \(x + y + z = 2 \) and the sphere \(x^2 + y^2 + z^2 = 2 \).

(a) Use Lagrange multipliers to find the maximum value of \(f(x, y, z) = z \) on \(C \).

(b) What are the coordinates of the lowest point on \(C \)?

6. (a) Combine the sum of the iterated integrals

\[
I = \int_0^1 \int_{-\sqrt{y}}^{\sqrt{y}} f(x, y) \, dx \, dy + \int_1^4 \int_{y-2}^{\sqrt{y}} f(x, y) \, dx \, dy
\]

into a single iterated integral with the order of integration reversed.

(b) Evaluate \(I \) if \(f(x, y) = \frac{e^x}{2-x} \).
7. The average distance of a point in a plane region \(D \) to a point \((a, b)\) is defined by

\[
\frac{1}{A(D)} \int \int_D \sqrt{(x-a)^2 + (y-b)^2} \, dx \, dy
\]

where \(A(D) \) is the area of the plane region \(D \). Let \(D \) be the unit disk \(1 \geq x^2 + y^2 \). Find the average distance of a point in \(D \) to the center of \(D \).

8. Let \(E \) be the region in the first octant bounded by the coordinate planes, the plane \(x + y = 1 \) and the surface \(z = y^2 \). Evaluate \(\iiint_E z \, dV \).

9. Let \(E \) be the smaller of the two solid regions bounded by the surfaces \(z = x^2 + y^2 \) and \(x^2 + y^2 + z^2 = 6 \). Evaluate \(\iiint_E (x^2 + y^2) \, dV \).

10. Evaluate \(\iiint_{\mathbb{R}^3} [1 + (x^2 + y^2 + z^2)^3]^{-1} \, dV \).