# **Trig Functions**

## Definitions



### Radians

For use in calculus, angles are best measured in units called radians. By definition, an arc of length  $\theta$  on a circle of radius one subtends an angle of  $\theta$  radians at the center of the circle. Because the circumference of a circle of radius one is  $2\pi$ , we have



#### **Special Triangles**





From the triangles above, we have

| θ                              | $\sin \theta$        | $\cos \theta$        | an 	heta             | $\csc \theta$        | $\sec \theta$        | $\cot 	heta$         |
|--------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| $0^{\circ} = 0$ rad            | 0                    | 1                    | 0                    |                      | 1                    |                      |
| $30^\circ = \frac{\pi}{6}$ rad | $\frac{1}{2}$        | $\frac{\sqrt{3}}{2}$ | $\frac{1}{\sqrt{3}}$ | 2                    | $\frac{2}{\sqrt{3}}$ | $\sqrt{3}$           |
| $45^\circ = \frac{\pi}{4}$ rad | $\frac{1}{\sqrt{2}}$ | $\frac{1}{\sqrt{2}}$ | 1                    | $\sqrt{2}$           | $\sqrt{2}$           | 1                    |
| $60^\circ = \frac{\pi}{3}$ rad | $\frac{\sqrt{3}}{2}$ | $\frac{1}{2}$        | $\sqrt{3}$           | $\frac{2}{\sqrt{3}}$ | 2                    | $\frac{1}{\sqrt{3}}$ |
| $90^\circ = \frac{\pi}{2}$ rad | 1                    | 0                    |                      | 1                    |                      | 0                    |
| $180^\circ = \pi$ rad          | 0                    | -1                   | 0                    |                      | -1                   |                      |

The empty boxes mean that the trig function is undefined (i.e.  $\pm \infty$ ) for that angle.

#### Trig Identities – Elementary

The following identities are all immediate consequences of the definitions at the top of the previous page

$$\csc \theta = \frac{1}{\sin \theta}$$
  $\sec \theta = \frac{1}{\cos \theta}$   $\tan \theta = \frac{\sin \theta}{\cos \theta}$   $\cot \theta = \frac{1}{\tan \theta} = \frac{\cos \theta}{\sin \theta}$ 

Because  $2\pi$  radians is 360°, the angles  $\theta$  and  $\theta + 2\pi$  are really the same, so

$$\sin(\theta + 2\pi) = \sin\theta$$
  $\cos(\theta + 2\pi) = \cos\theta$ 

The following trig identities are consequences of the figure to their right.





The following trig identities are consequences of the figure to their left.

$$\frac{1}{\frac{\pi}{2} - \theta} \sin \theta \qquad \sin \left(\frac{\pi}{2} - \theta\right) = \cos \theta \qquad \cos \left(\frac{\pi}{2} - \theta\right) = \sin \theta$$

#### Trig Identities – Addition Formulae

The following trig identities are derived in the handout entitled "Trig Identities – Cosine law and Addition Formulae"  $\sin(x + y) = \sin x \cos x + \cos x \sin y$ 

$$\sin(x+y) = \sin x \cos y + \cos x \sin y$$
$$\sin(x-y) = \sin x \cos y - \cos x \sin y$$
$$\cos(x+y) = \cos x \cos y - \sin x \sin y$$
$$\cos(x-y) = \cos x \cos y + \sin x \sin y$$

Setting y = x gives

$$\sin(2x) = 2\sin x \cos x$$

$$\cos(2x) = \cos^2 x - \sin^2 x$$
$$= 2\cos^2 x - 1 \qquad \text{since } \sin^2 x = 1 - \cos^2 x$$
$$= 1 - 2\sin^2 x \qquad \text{since } \cos^2 x = 1 - \sin^2 x$$
Solving 
$$\cos(2x) = 2\cos^2 x - 1 \text{ for } \cos^2 x \text{ and } \cos(2x) = 1 - 2\sin^2 x \text{ for } \sin^2 x \text{ gives}$$
$$\cos^2 x = \frac{1 + \cos(2x)}{2}$$

$$\sin^2 x = \frac{1}{2}$$
$$\sin^2 x = \frac{1 - \cos(2x)}{2}$$