Centroid Example

Find the centroid of the region bounded by \(y = \sin x \), \(y = \cos x \), \(x = 0 \) and \(x = \frac{\pi}{2} \).

Solution. We apply the formulae that the coordinates of the centroid (at centre of mass assuming constant density) of the region with top \(y = f(x) \), bottom \(y = g(x) \), left hand side \(x = a \) and right hand side \(x = b \) are

\[
\bar{x} = \frac{\int_a^b x (f(x) - g(x)) \, dx}{\int_a^b (f(x) - g(x)) \, dx} \quad \bar{y} = \frac{\int_a^b \frac{1}{2} [f(x)^2 - g(x)^2] \, dx}{\int_a^b [f(x) - g(x)] \, dx}
\]

Before we apply these formulae, we recall where they came from. Assume that the region has density one. Consider a thin vertical slice, of width \(dx \), running from \((x, g(x))\) to \((x, f(x))\). It has area, and hence mass,

\[
[f(x) - g(x)] \, dx.
\]

On this slice \(x \) is essentially constant. So the formula for \(\bar{x} \) is just the formula for the (weighted) average of \(x \) over the whole region. On the slice \(y \) runs from \(g(x) \) to \(f(x) \). The average value of \(y \) on the slice is \(\frac{1}{2} [f(x) + g(x)] \). Because \(\frac{1}{2} [f(x) + g(x)] [f(x) - g(x)] = \frac{1}{2} [f(x)^2 - g(x)^2] \), the formula for \(\bar{y} \) is the formula for the average of \(y \) over the whole region.

In the given problem, \(a = 0 \), \(b = \frac{\pi}{4} \), \(f(x) = \cos x \) and \(g(x) = \sin x \). Subbing these in to the numerator of the formula for \(\bar{x} \) and \(\bar{y} \) gives

\[
\int_a^b x (f(x) - g(x)) \, dx = \int_0^{\pi/4} (\sin x - \cos x) \, dx = \left[\sin x + \cos x \right]_0^{\pi/4} = \left(\frac{\sqrt{2}}{2} + \frac{1}{\sqrt{2}} \right) - [0 + 1] = \frac{2}{\sqrt{2}} - 1 = \sqrt{2} - 1
\]

Subbing into the numerator of the formula for \(\bar{x} \) gives

\[
\int_a^b x (f(x) - g(x)) \, dx = \int_0^{\pi/4} x (\cos x - \sin x) \, dx
\]

To integrate this, use integration by parts with \(u = x \) and \(dv = (\cos x - \sin x) \, dx \). So \(du = dx \), \(v = \sin x + \cos x \) and

\[
\int_0^{\pi/4} x (\cos x - \sin x) \, dx = x [\sin x + \cos x]_0^{\pi/4} - \int_0^{\pi/4} [\sin x + \cos x] \, dx
\]

\[
= \frac{\pi}{4} \left[\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \right] - \left[\sin x + \cos x \right]_0^{\pi/4}
\]

\[
= \frac{\pi}{4\sqrt{2}} - \left(\left(-\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \right) - (0 + 1) \right) = \frac{\pi}{2\sqrt{2}} - 1
\]

Finally, subbing into the numerator of the formula for \(\bar{y} \) gives

\[
\int_a^b \frac{1}{2} [f(x)^2 - g(x)^2] \, dx = \int_0^{\pi/4} \frac{1}{2} [\cos^2 x - \sin^2 x] \, dx = \int_0^{\pi/4} \frac{1}{2} \cos (2x) \, dx = \left[\frac{1}{4} \sin (2x) \right]_0^{\pi/4} = \frac{\pi}{4}
\]

Putting the formulae together

\[
\bar{x} = \frac{\int_a^b x (f(x) - g(x)) \, dx}{\int_a^b (f(x) - g(x)) \, dx} = \frac{\sqrt{2} - 1}{\sqrt{2} - 1} = 1
\]

\[
\bar{y} = \frac{\int_a^b \frac{1}{2} [f(x)^2 - g(x)^2] \, dx}{\int_a^b (f(x) - g(x)) \, dx} = \frac{1}{2\sqrt{2} - 1}
\]