A Delta–Epsilon Example.

Problem: Let \(\varepsilon > 0 \). Find a \(\delta > 0 \) such that \(|\cos(2\pi x - \sin(x - 1)) - 1| < \varepsilon \) for all \(|x - 1| < \delta \).

Solution: Define \(f(x) = \cos(2\pi x - \sin(x - 1)) \). We are given some number \(\varepsilon > 0 \). We have to find a \(\delta > 0 \) such that \(|f(x) - f(1)| < \varepsilon \) for all \(|x - 1| < \delta \). We wish, in the end, to write an argument of the form

\[
\text{Set } \delta = \cdots \text{. If } |x - 1| < \delta \text{ then }
\]

\[
|f(x) - f(1)| \leq \cdots
\]

\[
\vdots
\]

\[
< \varepsilon
\]

However at this stage, we still do not know what \(\delta \) to pick. So I like to start by writing out an argument of the above form, but leaving the choice of \(\delta \) blank.

Set \(\delta = \cdots \). If \(|x - 1| < \delta \) then

\[
|f(x) - f(1)| = |f'(z) (x - 1)|
\]

for some \(z \) between \(x \) and 1,

by the Mean–Value Theorem

\[
= | - \sin(2\pi z - \sin(z - 1)) \{2\pi - \cos(x - 1)\} (x - 1)|
\]

\[
\leq |\{2\pi - \cos(x - 1)\} (x - 1)| \text{ since } |\sin(2\pi z - \sin(z - 1))| \leq 1
\]

\[
= |2\pi - \cos(x - 1)| |x - 1|
\]

\[
\leq (2\pi + 1) |x - 1| \text{ since } -1 \leq \cos(x - 1) \leq 1
\]

We would now like to terminate the string of inequalities with \(< \varepsilon \). But for that to be true we need \((2\pi + 1) |x - 1| < \varepsilon \). That is, we need \(|x - 1| < \frac{\varepsilon}{2\pi + 1} \). This tells us to choose \(\delta = \frac{\varepsilon}{2\pi + 1} \). We may now \(\delta \) and give the full argument.

Set \(\delta = \frac{\varepsilon}{2\pi + 1} \). If \(|x - 1| < \delta \) then

\[
|f(x) - f(1)| = |f'(z) (x - 1)|
\]

for some \(z \) between \(x \) and 1,

\[
= | - \sin(2\pi z - \sin(z - 1)) \{2\pi - \cos(x - 1)\} (x - 1)|
\]

\[
\leq |\{2\pi - \cos(x - 1)\} (x - 1)| \text{ since } |\sin(2\pi z - \sin(z - 1))| \leq 1
\]

\[
= |2\pi - \cos(x - 1)| |x - 1|
\]

\[
\leq (2\pi + 1) |x - 1| \text{ since } -1 \leq \cos(x - 1) \leq 1
\]

\[
< \varepsilon
\]

\[
\text{since } |x - 1| < \delta = \frac{\varepsilon}{2\pi + 1}
\]