
Taylor Polynomials — Approximating Functions Near a

Specified Point

Suppose that you are interested in the values of some function f(x) for x near some fixed

point x0. The function is too complicated to work with directly. So you wish to work instead

with some other function F (x) that is both simple and a good approximation to f(x) for x

near x0. We’ll consider a couple of examples of this scenario later. First, we develop several

different approximations.

1. Zeroth Approximation — the Constant Approximation

The simplest functions are those that are constants. The first approximation will be by a

constant function. That is, the approximating function will have the form F (x) = A, for

some constant A. To ensure that F (x) is a good approximation for x close to x0, we choose

A so that f(x) and F (x) take exactly the same value when x = x0.

F (x) = A so F (x0) = A = f(x0) =⇒ A = f(x0)

Our first, and crudest, approximation rule is

f(x) ≈ f(x0) (1)

Here is a figure showing the graphs of a typical f(x) and approximating function F (x). At

x0
x

y
y = f(x)

y = F (x) = f(x0)

x = x0, f(x) and F (x) take the same value. For x very near x0, the values of f(x) and F (x)

remain close together. But the quality of the approximation deteriorates fairly quickly as x

moves away from x0.

2. First Approximation — the Tangent Line, or Linear, Approxi-

mation

We now develop a better approximation by allowing the approximating function to be a

linear function of x and not just a constant function. That is, we allow F (x) to be of the

form A + Bx, for some constants A and B. To ensure that F (x) is a good approximation
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for x close to x0, we choose A and B so that f(x0) = F (x0) and f ′(x0) = F ′(x0). Then f(x)

and F (x) will have both the same value and the same slope at x = x0.

F (x) = A +Bx =⇒ F (x0) = A+Bx0 = f(x0)

F ′(x) = B =⇒ F ′(x0) = B = f ′(x0)

Substituting B = f ′(x0) into A+Bx0 = f(x0) gives A = f(x0)− x0f
′(x0) and consequently

F (x) = A + Bx = f(x0) − x0f
′(x0) + xf ′(x0) = f(x0) + f ′(x0)(x − x0). So, our second

approximation is

f(x) ≈ f(x0) + f ′(x0)(x− x0) (2)

You may recall that y = f(x0) + f ′(x0)(x − x0) is exactly the equation of the tangent line

to the curve y = f(x) at x0. Here is a figure showing the graphs of a typical f(x) and

approximating function F (x). Observe that the graph of f(x0) + f ′(x0)(x − x0) remains

x0
x

y
y = f(x)

y = F (x) = f(x0) + f ′(x0)(x− x0)

close to the graph of f(x) for a much larger range of x than did the graph of f(x0).

3. Second Approximation — the Quadratic Approximation

We next develop a still better approximation by allowing the approximating function be to

a quadratic function of x. That is, we allow F (x) to be of the form A+Bx+Cx2, for some

constants A, B and C. To ensure that F (x) is a good approximation for x close to x0, we

choose A, B and C so that f(x0) = F (x0) and f ′(x0) = F ′(x0) and f ′′(x0) = F ′′(x0).

F (x) = A+Bx+ Cx2 =⇒ F (x0) = A +Bx0 + Cx2
0 = f(x0)

F ′(x) = B + 2Cx =⇒ F ′(x0) = B + 2Cx0 = f ′(x0)

F ′′(x) = 2C =⇒ F ′′(x0) = 2C = f ′′(x0)

Solve for C first, then B and finally A.

C = 1
2
f ′′(x0) =⇒ B = f ′(x0)− 2Cx0 = f ′(x0)− x0f

′′(x0)

=⇒ A = f(x0)−Bx0 − Cx2
0 = f(x0)− x0[f

′(x0)− x0f
′′(x0)]− 1

2
f ′′(x0)x

2
0

Then build up F (x).

F (x) = f(x0)− f ′(x0)x0 +
1
2
f ′′(x0)x

2
0 (this line is A)

+ f ′(x0) x − f ′′(x0)x0x (this line is Bx)

+ 1
2
f ′′(x0)x

2 (this line is Cx2)

= f(x0) + f ′(x0)(x− x0) +
1
2
f ′′(x0)(x− x0)

2
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Our third approximation is

f(x) ≈ f(x0) + f ′(x0)(x− x0) +
1
2
f ′′(x0)(x− x0)

2 (3)

It is called the quadratic approximation. Here is a figure showing the graphs of a typical

f(x) and approximating function F (x). This third approximation looks better than both

x0
x

y
y = f(x)

y = F (x) = f(x0) + f ′(x0)(x− x0) +
1
2
f ′′(x0)(x− x0)

2

the first and second.

4. Still Better Approximations – Taylor Polynomials

We can use the same strategy to generate still better approximations by polynomials of any

degree we like. Let’s approximate by a polynomial of degree n. The algebra will be simpler

if we make the approximating polynomial F (x) of the form

a0 + a1(x− x0) + a2(x− x0)
2 + · · ·+ an(x− x0)

n

Because x0 is itself a constant, this is really just a rewriting of A0+A1x+A2x
2+ · · ·+Anx

n.

For example,

a0 + a1(x− x0) + a2(x− x0)
2 = a0 + a1x− a1x0 + a2x

2 − 2a2xx0 + a2x
2
0

= (a0 − a1x0 + a2x
2
0) + (a1 − 2a2x0)x+ a2x

2

= A0 + A1x+ A2x
2

with A0 = a0 − a1x0 + a2x
2
0, A1 = a1 − 2a2x0 and A2 = a2. The advantage of the form

a0 + a1(x− x0) + · · · is that x− x0 is zero when x = x0, so lots of terms in the computation

drop out. We determine the coefficients ai by the requirements that f(x) and its approximator

F (x) have the same value and the same first n derivatives at x = x0.

F (x) = a0 + a1(x− x0) + a2(x− x0)
2 + · · ·+ an(x− x0)

n

=⇒ F (x0) = a0 = f(x0)

F ′(x) = a1 + 2a2(x− x0) + 3a3(x− x0)
2 + · · ·+ nan(x− x0)

n−1

=⇒ F ′(x0) = a1 = f ′(x0)

F ′′(x) = 2a2 + 3× 2a3(x− x0) + · · ·+ n(n− 1)an(x− x0)
n−2

=⇒ F ′′(x0) = 2a2 = f ′′(x0)
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F (3)(x) = 3× 2a3 + · · ·+ n(n− 1)(n− 2)an(x− x0)
n−3

=⇒ F (3)(x0) = 3× 2a3 = f (3)(x0)

...

F (n)(x) = n!an =⇒ F (n)(x0) = n!an = f (n)(x0)

Here n! = n(n− 1)(n− 2) · · ·1 is called n factorial. Hence

a0 = f(x0) a1 = f ′(x0) a2 =
1
2!
f ′′(x0) a3 =

1
3!
f (3)(x0) · · · an = 1

n!
f (n)(x0)

and the approximator, which is called the Taylor polynomial of degree n for f(x) at x = x0,

is

f(x) ≈ f(x0)+f ′(x0) (x−x0)+
1
2!
f ′′(x0) (x−x0)

2+ 1
3!
f (3)(x0) (x−x0)

3+ · · ·+ 1
n!
f (n)(x0) (x−x0)

n

or, in summation notation,

f(x) ≈
n

∑

ℓ=0

1
ℓ!
f (ℓ)(x0) (x− x0)

ℓ (4)

where we are using the standard convention that 0! = 1.

5. The ∆x, ∆y Notation

Suppose that we have two variables x and y that are related by y = f(x), for some function

f . For example, x might be the number of cars manufactured per week in some factory and

y the cost of manufacturing those x cars. Let x0 be some fixed value of x and let y0 = f(x0)

be the corresponding value of y. Now suppose that x changes by an amount ∆x, from x0 to

x0+∆x. As x undergoes this change, y changes from y0 = f(x0) to f(x0+∆x). The change

in y that results from the change ∆x in x is

∆y = f(x0 +∆x)− f(x0)

Substituting x = x0 +∆x into the linear approximation (2) yields the approximation

f(x0 +∆x) ≈ f(x0) + f ′(x0)(x0 +∆x− x0) = f(x0) + f ′(x0)∆x

for f(x0 +∆x) and consequently the approximation

∆y = f(x0 +∆x)− f(x0) ≈ f(x0) + f ′(x0)∆x− f(x0) =⇒ ∆y ≈ f ′(x0)∆x (5)

for ∆y. In the automobile manufacturing example, when the production level is x0 cars

per week, increasing the production level by ∆x will cost approximately f ′(x0)∆x. The

additional cost per additional car, f ′(x0), is called the “marginal cost” of a car.

If we use the quadratic approximation (3) in place of the linear approximation (2)

f(x0 +∆x) ≈ f(x0) + f ′(x0)∆x+ 1
2
f ′′(x0)∆x2
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we arrive at the quadratic approximation

∆y = f(x0 +∆x)− f(x0)

≈ f(x0) + f ′(x0)∆x+ 1
2
f ′′(x0)∆x2 − f(x0)

=⇒ ∆y ≈ f ′(x0)∆x+ 1
2
f ′′(x0)∆x2 (6)

for ∆y.

6. Examples

Example 1

As an initial example, we compute, approximately, tan 46◦, using the constant approximation

(1), the linear approximation (2) and the quadratic approximation (3). To do so, we choose

f(x) = tanx, x = 46 π
180

radians and x0 = 45 π
180

= π
4
radians. This is a good choice for x0

because

• x0 = 45◦ is close to x = 46◦. Generally, the closer x is to x0, the better the quality of

our various approximations.

• We know the values of all trig functions at 45◦.

The first step in applying our approximations is to compute f and its first two derivatives

at x = x0.

f(x) = tanx =⇒ f(x0) = tan π
4
= 1

f ′(x) = (cosx)−2 =⇒ f ′(x0) =
1

cos2(π/4)
= 1

(1/
√
2)2

= 2

45◦

√
2 1

1
f ′′(x) = −2− sinx

cos3 x
=⇒ f ′′(x0) = 2 sin(π/4)

cos3(π/4)
= 2 1/

√
2

(1/
√
2)3

= 2 1
1/2

= 4

As x− x0 = 46 π
180

− 45 π
180

= π
180

radians, the three approximations are

f(x) ≈ f(x0) = 1

f(x) ≈ f(x0) + f ′(x0)(x− x0) = 1 + 2 π
180

= 1.034907

f(x) ≈ f(x0) + f ′(x0)(x− x0) +
1
2
f ′′(x0)(x− x0)

2 = 1 + 2 π
180

+ 1
2
4
(

π
180

)2
= 1.035516

For comparison purposes, tan 46◦ really is 1.035530 to 6 decimal places.

Example 1

All of our derivative formulae for trig functions were developed under the assumption

that angles are measured in radians. Those derivatives appeared in the approxima-

tion formulae that we used in Example 1, so we were obliged to express x − x0 in

radians.

Warning 2.
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Example 3

Let’s find all Taylor polyomials for sin x and cos x at x0 = 0. To do so we merely need com-

pute all derivatives of sin x and cosx at x0 = 0. First, compute all derivatives at general

x.

f(x) = sin x f ′(x) = cosx f ′′(x) = − sin x f (3)(x) = − cosx f (4)(x) = sin x · · ·
g(x) = cosx g′(x) = − sin x g′′(x) = − cosx g(3)(x) = sin x g(4)(x) = cos x · · ·

(7)

The pattern starts over again with the fourth derivative being the same as the original

function. Now set x = x0 = 0.

f(x) = sin x f(0) = 0 f ′(0) = 1 f ′′(0) = 0 f (3)(0) = −1 f (4)(0) = 0 · · ·
g(x) = cos x g(0) = 1 g′(0) = 0 g′′(0) = −1 g(3)(0) = 0 g(4)(0) = 1 · · ·

(8)

For sin x, all even numbered derivatives are zero. The odd numbered derivatives alternate

between 1 and −1. For cosx, all odd numbered derivatives are zero. The even numbered

derivatives alternate between 1 and −1. So, the Taylor polynomials that best approximate

sin x and cosx near x = x0 = 0 are

sin x ≈ x− 1
3!
x3 + 1

5!
x5 − · · ·

cosx ≈ 1− 1
2!
x2 + 1

4!
x4 − · · ·

Here are graphs of sin x and its Taylor poynomials (about x0 = 0) up to degree seven.

sin x ≈ x sin x ≈ x− 1
3!
x3

sin x ≈ x− 1
3!
x3 + 1

5!
x5 sin x ≈ x− 1

3!
x3 + 1

5!
x5 − 1

7!
x7
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To get an idea of how good these Taylor polynomials are at approximating sin and cos, let’s

concentrate on sin x and consider x’s whose magnitude |x| ≤ 1. (If you’re writing software

to evaluate sin x, you can always use the trig identity sin(x) = sin(x−2nπ), to easily restrict

to |x| ≤ π, and then use the trig identity sin(x) = − sin(x±π) to reduce to |x| ≤ π
2
and then

use the trig identity sin(x) = ∓ cos(π
2
± x)) to reduce to |x| ≤ π

4
.) If |x| ≤ 1 radians (recall

that the derivative formulae that we used to derive the Taylor polynomials are valid only

when x is in radians), or equivalently if |x| is no larger than 180
π

≈ 57◦, then the magnitudes

of the successive terms in the Taylor polynomials for sin x are bounded by

|x| ≤ 1 1
3!
|x|3 ≤ 1

6
1
5!
|x|3 ≤ 1

120
≈ 0.0083

1
7!
|x|7 ≤ 1

7!
≈ 0.0002 1

9!
|x|9 ≤ 1

9!
≈ 0.000003 1

11!
|x|11 ≤ 1

11!
≈ 0.000000025

From these inequalities, and the graphs on the previous page, it certainly looks like, for x

not too large, even relatively low degree Taylor polynomials give very good approximations.

We’ll see later how to get rigorous error bounds on our Taylor polynomial approximations.

Example 3

Example 4

Suppose that you are ten meters from a vertical pole. You were contracted to measure the

height of the pole. You can’t take it down or climb it. So you measure the angle subtended

by the top of the pole. You measure θ = 30◦, which gives

h = 10 tan 30◦ = 10√
3
≈ 5.77m

But there’s a catch. Angles are hard to measure accurately. Your contract specifies that the

height must be measured to within an accuracy of 10 cm. How accurate did your measurement

of θ have to be?

Solution. For simplicity, we are going to assume that the pole is perfectly straight and

perfectly vertical and that your distance from the pole was exactly 10 m. Write h = h0+∆h,

where h is the exact height and h0 =
10√
3
is the computed height. Their difference, ∆h, is the

error. Similarly, write θ = θ0 +∆θ where θ is the exact angle, θ0 is the measured angle and

∆θ is the error. Then

h0 = 10 tan θ0 h0 +∆h = 10 tan(θ0 +∆θ)

We apply ∆y ≈ f ′(x0)∆x, with y replaced by h and x replaced by θ. That is, we apply

∆h ≈ f ′(θ0)∆θ. Choosing f(θ) = 10 tan θ and θ0 = 30◦ and substituting in

f ′(θ0) = 10 sec2 θ0 = 10 sec2 30◦ = 10
(

2√
3

)2
= 40

3

we see that the error in the computed value of h and the error in the measured value of θ are

related by

∆h ≈ 40
3
∆θ or ∆θ ≈ 3

40
∆h
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To achieve |∆h| ≤ 0.1m, we better have |∆θ| smaller than 0.1 3
40

radians or 0.1 3
40

180
π

= 0.43◦.

Example 4

Example 5

Suppose that the radius of a sphere has been measured with a percentage error of at most

ε%. Find the corresponding approximate percentage error in the surface area and volume of

the sphere.

Solution. Suppose that the exact radius is r0 and that the measured radius is r0 + ∆r.

Then the absolute error in the measurement is |∆r| and, by definition, the percentage error

is 100 |∆r|
r0

. We are told that 100 |∆r|
r0

≤ ε. The surface area of a sphere of radius r is

A(r) = 4πr2. The error in the surface area computed with the measured radius is

∆A = A(r0 +∆r)− A(r0) ≈ A′(r0)∆r

The corresponding percentage error is

100 |∆A|
A(r0)

≈ 100 |A′(r0)∆r|
A(r0)

= 1008πr0|∆r|
4πr2

0

= 2× 100 |∆r|
r0

≤ 2ε

The volume of a sphere of radius r is V (r) = 4
3
πr3. The error in the volume computed with

the measured radius is

∆V = V (r0 +∆r)− V (r0) ≈ V ′(r0)∆r

The corresponding percentage error is

100 |∆V |
V (r0)

≈ 100 |V ′(r0)∆r|
V (r0)

= 100
4πr20|∆r|
4πr3

0
/3

= 3× 100 |∆r|
r0

≤ 3ε

We have just computed an approximation to ∆V . In this problem, we can compute the

exact error

V (r0 +∆r)− V (r0) =
4
3
π(r0 +∆r)3 − 4

3
πr30

Applying (a + b)3 = a3 + 3a2b+ 3ab2 + b3 with a = r0 and b = ∆r, gives

V (r0 +∆r)− V (r0) =
4
3
π[r30 + 3r20∆r + 3r0∆r2 +∆r3 − r30]

= 4
3
π[3r20∆r + 3r0∆r2 +∆r3]

The linear approximation, ∆V ≈ 4πr20 × ∆r, is recovered by retaining only the first of the

three terms in the square brackets. Thus the difference between the exact error and the linear

approximation to the error is obtained by retaining only the last two terms in the square

brackets. This has magnitude

4
3
π
∣

∣3r0∆r2 +∆r3
∣

∣ = 4
3
π
∣

∣3r0 +∆r
∣

∣∆r2

or in percentage terms

100
1

4
3
πr30

4
3
π
∣

∣3r0∆r2 +∆r3
∣

∣ = 100
∣

∣3∆r2

r2
0

+ ∆r3

r3
0

∣

∣ =
(

1003∆r
r0

)(

∆r
r0

)
∣

∣1 + ∆r
3r0

∣

∣ ≤ 3ε
(

ε
100

)(

1 + ε
300

)
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Thus the difference between the exact error and the linear approximation is roughly a factor

of ε
100

smaller than the linear approximation 3ε.

Example 5

Example 6

When an aircraft crosses the Atlantic ocean at a speed of u mph, the flight costs the company

C(u) = 100 + u
3
+ 240,000

u

dollars per passenger. When there is no wind, the aircraft flies at an airspeed of 550mph.

Find the approximate savings, per passenger, when there is a 35 mph tail wind and estimate

the cost when there is a 50 mph head wind.

Solution. Let u0 = 550. When the aircraft flies at speed u0, the cost per passenger is C(u0).

By (5), a change of ∆u in the airspeed results in an change of

∆C ≈ C ′(u0)∆u =
[

1
3
− 240,000

u2
0

]

∆u =
[

1
3
− 240,000

5502

]

∆u ≈ −.460∆u

in the cost per passenger. With the tail wind ∆u = 35 and the resulting

∆C ≈ −.460× 35 = −16.10

so there is a savings of $16.10. With the head wind ∆u = −50 and the resulting

∆C ≈ −.4601× (−50) = 23.01

so there is an additional cost of about $23.00.
Example 6

Example 7

To compute the height h of a lamp post, the length s of the shadow of a two meter pole is

measured. The pole is 6 m from the lamp post. If the length of the shadow was measured

to be 4 m, with an error of at most one cm, find the height of the lamp post and estimate

the percentage error in the height.

Solution. By similar triangles,

s

2
=

6 + s

h
=⇒ h = (6 + s)

2

s
=

12

s
+ 2

h

s6

2

The length of the shadow was measured to be s0 = 4 m. The corresponding height of the

lamp post is h0 = 12
s0

+ 2 = 12
4
+ 2 = 5 m. If the error in the measurement of the length of

the shadow was ∆s, then the exact shadow length was s = s0 +∆s and the exact lamp post

height is h = f(s0 +∆s), where f(s) = 12
s
+ 2. The error in the computed lamp post height

is ∆h = h− h0 = f(s0 +∆s)− f(s0). By (5),

∆h ≈ f ′(s0)∆s = −12
s2
0

∆s = −12
42
∆s
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We are told that |∆s| ≤ 1
10

m. Consequently |∆h| ≤ 12
42

1
10

= 3
40

(approximately). The

percentage error is then approximately

100 |∆h|
h0

≤ 100 3
40×5

= 1.5%

Example 7

7. The Error in the Taylor Polynomial Approximations

Any time you make an approximation, it is desirable to have some idea of the size of the error

you introduced. We will now develop a formula for the error introduced by the approximation

f(x) ≈ f(x0). This formula can be used to get an upper bound on the size of the error, even

when you cannot determine f(x) exactly.

By simple algebra

f(x) = f(x0) +
f(x)− f(x0)

x− x0
(x− x0) (9)

The coefficient f(x)−f(x0)
x−x0

of (x − x0) is the average slope of f(t) as t moves from t = x0 to

t = x. In the figure below, it is the slope of the secant joining the points (x0, f(x0)) and

x0

(

x0, f(x0)
)

c

(

x, f(x)
)

x t

y

y = f(t)

(x, f(x)). As t moves x0 to x, the instantaneous slope f ′(t) keeps changing. Sometimes it is

larger than the average slope f(x)−f(x0)
x−x0

and sometimes it is smaller than the average slope.

But there is a theorem, called the Mean–Value Theorem, which says that there must be

some number c, strictly between x0 and x, for which f ′(c) = f(x)−f(x0)
x−x0

. Substituting this into

formula (9) gives

f(x) = f(x0) + f ′(c)(x− x0) for some c strictly between x0 and x (10)

Thus the error in the approximation f(x) ≈ f(x0) is exactly f ′(c)(x− x0) for some c strictly

between x0 and x. There are formulae similar to (10), that can be used to bound the error

in our other approximations. One is

f(x) = f(x0)+f ′(x0)(x−x0)+
1
2
f ′′(c)(x−x0)

2 for some c strictly between x0 and x (11)
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It implies that the error in the approximation f(x) ≈ f(x0) + f ′(x0) (x − x0) is exactly
1
2
f ′′(c) (x− x0)

2 for some c strictly between x0 and x. In general

f(x) =f(x0) + f ′(x0) (x− x0) + · · ·+ 1
n!
f (n)(x0) (x− x0)

n

+ 1
(n+1)!

f (n+1)(c) (x− x0)
n+1 for some c strictly between x0 and x (12)

That is, the error introduced when f(x) is approximated by its Taylor polynomial of degree

n, is precisely the last term of the Taylor polynomial of degree n+1, but with the derivative

evaluated at some point between x0 and x, rather than exactly at x0. These error formulae

are proven in the next (optional) section.

Example 8

Suppose we wish to approximate sin 46◦ using Taylor polynomials about x0 = 45◦. Then, we

would define

f(x) = sin x x0 = 45◦ = 45 π
180

radians x = 46◦ = 46 π
180

radians x− x0 =
π
180

radians

The first few derivatives of f at x0 are

f(x) = sin x f(x0) =
1√
2

f ′(x) = cosx f ′(x0) =
1√
2

f ′′(x) = − sin x f ′′(x0) = − 1√
2

f (3)(x) = − cosx

The constant, linear and quadratic approximations for sin 46◦ are

sin 46◦ ≈ f(x0) = 1√
2

= 0.70710678

sin 46◦ ≈ f(x0) + f ′(x0)(x−x0) = 1√
2
+ 1√

2

(

π
180

)

= 0.71944812

sin 46◦ ≈ f(x0) + f ′(x0)(x−x0) +
1
2
f ′′(x0)(x−x0)

2 = 1√
2
+ 1√

2

(

π
180

)

− 1√
2

(

π
180

)2
= 0.71934042

The errors in those approximations are

error in 0.70710678 = f ′(c)(x− x0) = (cos c)
(

π
180

)

error in 0.71944812 = 1
2
f ′′(c)(x− x0)

2 = −1
2
(sin c)

(

π
180

)2

error in 0.71923272 = 1
3!
f (3)(c)(x− x0)

3 = − 1
3!
(cos c)

(

π
180

)3

In each of these three cases c must lie somewhere between 45◦ and 46◦. No matter what c is,

we know that | sin c| ≤ 1 and cos c| ≤ 1. Hence
∣

∣error in 0.70710678
∣

∣ ≤
(

π
180

)

< 0.018
∣

∣error in 0.71944812
∣

∣ ≤ 1
2

(

π
180

)2
< 0.00015

∣

∣error in 0.71934042
∣

∣ ≤ 1
3!

(

π
180

)3
< 0.0000009

Example 8
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Example 9 (ex and e)

Let f(x) = ex. Then

f(x) = ex ⇒ f ′(x) = ex ⇒ f ′′(x) = ex · · ·
f(0) = e0 = 1 ⇒ f ′(0) = e0 = 1 ⇒ f ′′(0) = e0 = 1 · · ·

Applying (12) with f(x) = ex and x0 = 0, and using that f (m)(x0) = ex0 = e0 = 1 for all m,

ex = f(x) = 1 + x+ x2

2!
+ · · ·+ xn

n!
+ 1

(n+1)!
ecxn+1 (13)

for some c between 0 and x. We can use this to find approximate values for the number e,

with any desired degree of accuracy. Just setting x = 1 in (13) gives

e = 1 + 1 + 1
2!
+ · · ·+ 1

n!
+ 1

(n+1)!
ec (14)

for some c between 0 and 1. Since ec increases as c increases, this says that 1+1+ 1
2!
+ · · ·+ 1

n!

is an approximate value for e with error at most e
(n+1)!

. The only problem with this error

bound is that it contains the number e, which we do not know. Fortunately, we can again

use (14) to get a simple upper bound on how big e can be. Just setting n = 2 in (14), and

again using that ec ≤ e, gives

e ≤ 1 + 1 + 1
2!
+ e

3!
=⇒

(

1− 1
6

)

e ≤ 1 + 1 + 1
2!
= 5

2
=⇒ e ≤ 5

2
× 6

5
= 3

So we now know that 1 + 1 + 1
2!
+ · · ·+ 1

n!
is an approximate value for e with error at most

3
(n+1)!

. For example, when n = 9, 3
(n+1)!

= 3
10!

< 10−6 so that

1 + 1 + 1
2!
+ · · ·+ 1

9!
≤ e ≤ 1 + 1 + 1

2!
+ · · ·+ 1

9!
+ 10−6

with

1 + 1 + 1
2!

+ 1
3!

+ 1
4!

+ 1
5!

+ 1
6!

+ 1
7!

+ 1
8!

+ 1
9!

=1 + 1 + 0.5 + 0.16̇ + 0.0416̇ + 0.0083̇ + 0.00138̇ + 0.0001984 + 0.0000248 + 0.0000028

=2.718282

to six decimal places.

Example 9

Example 10 (Example 4 Revisited)

In Example 4 (measuring the height of the pole), we used the linear approximation

f(θ0 +∆θ) ≈ f(θ0) + f ′(θ0)∆θ (15)

with f(θ) = 10 tan θ and θ0 = 30 π
180

to get

∆h = f(θ0 +∆θ)− f(θ0) ≈ f ′(θ0)∆θ =⇒ ∆θ ≈ ∆h

f ′(θ0)
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While this procedure is fairly reliable, it did involve an approximation. So that you could

not 100% guarantee to your client’s lawyer that an accuracy of 10 cm was achieved. If we

use the exact formula (10), with the replacements x → θ0 +∆θ and x0 → θ0

f(θ0 +∆θ) = f(θ0) + f ′(c)∆θ for some c between θ0 and θ0 +∆θ

in place of the approximate formula (2), this legality is taken care of.

∆h = f(θ0 +∆θ)− f(θ0) = f ′(c)∆θ =⇒ ∆θ =
∆h

f ′(c)
for some c between θ0 and θ0 +∆θ

Of course we do not know exactly what c is. But suppose that we know that the angle was

somewhere between 25◦ and 35◦. In other words suppose that, even though we don’t know

precisely what our measurement error was, it was certainly no more than 5◦. Since sec(c)

increases with c (for c between 0 and 90◦), f ′(c) = 10 sec2(c) must certainly be smaller than

10 sec2 35◦ < 14.91, which means that ∆h
f ′(c)

must be at least .1
14.91

radians or .1
14.91

180
π

= .38◦.

A measurement error of 0.38◦ or less is certainly acceptable.

Example 10

8. Derivation of the Error Formulae (Optional)

Fix any real number x0 and natural number n. Define

En(x) = f(x)− f(x0)− f ′(x0)(x− x0)− · · · − 1
n!
f (n)(x0)(x− x0)

n

This is the error introduced when one approximates f(x) by its Taylor polynomial of degree

n (about x0). We shall now prove that

En(x) =
1

(n+1)!
f (n+1)(c) (x− x0)

n+1 (16n)

for some c strictly between x0 and x. In fact, we have already used the Mean–Value Theorem

to prove that E0(x) = f ′(c) (x − x0), for some c strictly between x0 and x. This was the

content of (10). To deal with n ≥ 1, we need the following generalization of the Mean–Value

Theorem. (Choosing G(x) = x reduces Theorem 11 to the Mean–Value Theorem.)

Let the functions F (x) and G(x) both be defined and continuous on a ≤ x ≤ b and

both be differentiable on a < x < b. Furthermore, suppose that G′(x) 6= 0 for all

a < x < b. Then, there is a number c obeying a < c < b such that

F (b)−F (a)
G(b)−G(a)

= F ′(c)
G′(c)

Theorem 11 (Generalized Mean–Value Theorem).
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Proof. Define

h(x) =
[

F (b)− F (a)
][

G(x)−G(a)
]

−
[

F (x)− F (a)
][

G(b)−G(a)
]

Observe that h(a) = h(b) = 0. So, by the Mean–Value Theorem, there is a number c obeying

a < c < b such that

0 = h(b)−h(a)
b−a

= h′(c) =
[

F (b)− F (a)
]

G′(c)− F ′(c)
[

G(b)−G(a)
]

As G(a) 6= G(b) (otherwise the Mean–Value Theorem would imply the existence of an a <

x < b obeying G′(x) = 0), we may divide by G′(c)
[

G(b) − G(a)
]

which gives the desired

result.

Proof of (16n). To prove (161), that is (16n) for n = 1, simply apply the Generalized Mean–

Value Theorem with F (x) = E1(x) = f(x)−f(x0)−f ′(x0)(x−x0), G(x) = (x−x0)
2, a = x0

and b = x. Then F (a) = G(a) = 0, so that

F (b)
G(b)

= F ′(c̃)
G′(c̃)

=⇒ f(x)−f(x0)−f ′(x0)(x−x0)
(x−x0)2

= f ′(c̃)−f ′(x0)
2(c̃−x0)

for some c̃ strictly between x0 and x. By the Mean–Value Theorem (the standard one, but

with f(x) replaced by f ′(x)), f ′(c̃)−f ′(x0)
c̃−x0

= f ′′(c), for some c strictly between x0 and c̃ (which

forces c to also be strictly between x0 and x). Hence

f(x)−f(x0)−f ′(x0)(x−x0)
(x−x0)2

= 1
2
f ′′(c)

which is exactly (161).

At this stage, we know that (16n) applies to all (sufficiently differentiable) functions for

n = 0 and n = 1. To prove it for general n, we proceed by induction. That is, we assume

that we already know that (16n) applies to n = k − 1 for some k (as is the case for k = 1, 2)

and we wish to prove that it also applies to n = k. We apply the Generalized Mean–Value

Theorem with F (x) = Ek(x), G(x) = (x−x0)
k+1, a = x0 and b = x. Then F (a) = G(a) = 0,

so that
F (b)

G(b)
=

F ′(c̃)

G′(c̃)
=⇒ Ek(x)

(x− x0)k+1
=

E ′
k(c̃)

(k + 1)(c̃− x0)k
(17)

for some c̃ between x0 and x. But

E ′
k(c̃) =

d

dx

[

f(x)− f(x0)− f ′(x0) (x− x0)− · · · − 1
k!
f (k)(x0) (x− x0)

k
]

x=c̃

=
[

f ′(x)− f ′(x0)− · · · − 1
(k−1)!

f (k)(x0)(x− x0)
k−1

]

x=c̃

= f ′(c̃)− f ′(x0)− · · · − 1
(k−1)!

f (k)(x0)(c̃− x0)
k−1 (18)

The last expression is exactly the definition of Ek−1(c̃), but for the function f ′(x), instead of

the function f(x). But we already know that (16k−1) is true. So, substituting n → k − 1,

f → f ′ and x → c̃ into (16n), we already know that (18), i.e. E ′
k(c̃), equals

1
(k−1+1)!

(

f ′)(k−1+1)
(c)(c̃− x0)

k−1+1 = 1
k!
f (k+1)(c) (c̃− x0)

k
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for some c strictly between x0 and c̃, and hence also strictly between x0 and x. Substituting

this into (17) gives

Ek(x)

(x− x0)k+1
=

E ′
k(c̃)

(k + 1)(c̃− x0)k
=

f (k+1)(c) (c̃− x0)
k

(k + 1) k! (c̃− x0)k
=

1

(k + 1)!
f (k+1)(c)

which is exactly (16k).

So we now know that

• if, for some k, (16k−1) is true for all k times differentiable functions,

• then (16k) is true for all k + 1 times differentiable functions.

Repeatedly applying this for k = 2, 3, 4, · · · (and recalling that (161) is true) gives (16k) for

all k.

9. Taylor Series

Fix a real number x0 and suppose that all derivatives of the function f(x) exist. We have

seen in (12) that, for any natural number n,

f(x) = Pn(x) + En(x) (19)

where

Pn(x) = f(x0) + f ′(x0) (x− x0) + · · ·+ 1
n!
f (n)(x0) (x− x0)

n (19a)

is the Taylor polynomial of degree n for the function f(x) and expansion point x0 and

En(x) = f(x)− Pn(x) =
1

(n+1)!
f (n+1)(c) (x− x0)

n+1 (19b)

is the error introduced when we approximate f(x) by the polynomial Pn(x). If it happens

that En(x) tends to zero as n → ∞, then we have the exact formula

f(x) = lim
n→∞

Pn(x)

for f(x). This is usually written

f(x) =

∞
∑

n=0

1
n!
f (n)(x0) (x− x0)

n (20)

and is called the Taylor series of f(x) with expansion point x0.

Example 12 (Exponential Series)

This happens with the exponential function f(x) = ex. Recall from (13) that, for all natural

numbers n and all real numbers x,

ex = 1 + x+ 1
2
x2 + 1

3!
x3 + · · ·+ 1

n!
xn + ec

(n+1)!
xn+1
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for some c strictly between 0 and x. Now consider any fixed real number x. As c runs from 0

to x, ec runs from e0 = 1 to ex. In particular, ec is always between 1 and ex and so is smaller

than 1 + ex. Thus the error term

|En(x)| =
∣

∣

∣

ec

(n+ 1)!
xn+1

∣

∣

∣
≤ [ex + 1]

|x|n+1

(n+ 1)!

Let’s call en(x) = |x|n+1

(n+1)!
. We claim that as n increases towards infinity, en(x) decreases

(quickly) towards zero. To see this, let’s compare en(x) and en+1(x).

en+1(x)

en(x)
=

|x|n+2

(n+2)!

|x|n+1

(n+1)!

=
|x|

n+ 2

So, when n is bigger than, for example 2|x|, we have en+1(x)
en(x)

< 1
2
. That is, increasing the

index on en(x) by one decreases the size of en(x) by a factor of at least two. As a result en(x)

must tend to zero as n → ∞. Consequently lim
n→∞

En(x) = 0 and

ex = lim
n→∞

[

1 + x+ 1
2
x2 + 1

3!
x3 + · · ·+ 1

n!
xn

]

=

∞
∑

n=0

1
n!
xn (21)

Example 12

Example 13 (Sine and Cosine Series)

The trigonometric functions sin x and cosx also have widely used Taylor series expansions

about x0 = 0. Reviewing (7) we see that every derivative of sin x and cosx is one of ± sin x

and ± cos x. Consequently, when we apply (19b) we always have
∣

∣f (n+1)(c)
∣

∣ ≤ 1 and hence

|En(x)| ≤ |x|n+1

(n+1)!
. We have already seen in Example 12, that |x|n+1

(n+1)!
(which we called en(x)

in Example 12) converges to zero as n → ∞. Consequently, for both f(x) = sin x and

f(x) = cosx, we have lim
n→∞

En(x) = 0 and

f(x) = lim
n→∞

[

f(0) + f ′(0) x+ · · ·+ 1
n!
f (n)(0) xn

]

Reviewing (8), we conclude that

sin x = x− 1
3!
x3 + 1

5!
x5 − · · · =

∞
∑

n=0

(−1)n 1
(2n+1)!

x2n+1

cosx = 1− 1
2!
x2 + 1

4!
x4 − · · · =

∞
∑

n=0

(−1)n 1
(2n)!

x2n

(22)

Example 13
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10. Evaluating Limits Using Taylor Expansions

Taylor polynomials provide a good way to understand the behaviour of a function near a

specified point and so are useful for evaluating complicated limits. We’ll see examples of this

shortly.

We’ll just start by recalling, from (12), that if, for some natural number n, the function

f(x) has n+ 1 derivatives near the point x0, then

f(x) = Pn(x) + En(x)

where

Pn(x) = f(x0) + f ′(x0) (x− x0) + · · ·+ 1
n!
f (n)(x0) (x− x0)

n

is the Taylor polynomial of degree n for the function f(x) and expansion point x0 and

En(x) = f(x)− Pn(x) =
1

(n+1)!
f (n+1)(c) (x− x0)

n+1

is the error introduced when we approximate f(x) by the polynomial Pn(x). Here c is some

unknown number between x0 and x. As c is not known, we do not know exactly what the

error En(x) is. But that is usually not a problem. In taking the limit x → x0, we are only

interested in x’s that are very close to x0, and when x is very close x0, c must also be very

close to x0. As long as f (n+1)(x) is continuous at x0, f
(n+1)(c) must approach f (n)(x0) as

x → x0. In particular there must be constants M,D > 0 such that
∣

∣f (n+1)(c)
∣

∣ ≤ M for all

c’s within a distance D of x0. If so, there is another constant C (namely M
(n+1)!

) such that

∣

∣En(x)
∣

∣ ≤ C|x− x0|n+1 whenever |x− x0| ≤ D

There is some notation for this behavour.

11. The Big O Notation

Let x0 and m be real numbers. We say “F (x) is of order |x− x0|m near x0” and we

write F (x) = O
(

|x− x0|m
)

if there exist constants C,D > 0 such that

∣

∣F (x)
∣

∣ ≤ C|x− x0|m whenever |x− x0| ≤ D (23)

Whenever O
(

|x− x0|m
)

appears in an algebraic expression, it just stands for some

(unknown) function F (x) that obeys (23). This is called “big O” notation.

Definition 14 (Big O).

Example 15

Let f(x) = sin x and x0 = 0. Then

f(x) = sin x f ′(x) = cos x f ′′(x) = − sin x f (3)(x) = − cos x f (4)(x) = sin x · · ·
f(0) = 0 f ′(0) = 1 f ′′(0) = 0 f (3)(0) = −1 f (4)(0) = 0 · · ·
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and the pattern repeats. Thus
∣

∣f (n+1)(c)
∣

∣ ≤ 1 for all real numbers c and all natural numbers

n. So the Taylor polynomial of, for example, degree 3 and its error term are

sin x = x− 1
3!
x3 + cos c

5!
x5

= x− 1
3!
x3 +O(|x|5)

under Definition 14, with C = 1
5!
and any D > 0. Similarly, for any natural number n,

sin x = x− 1
3!
x3 + 1

5!
x5 − · · ·+ (−1)n 1

(2n+1)!
x2n+1 +O

(

|x|2n+3
)

cosx = 1− 1
2!
x2 + 1

4!
x4 − · · ·+ (−1)n 1

(2n)!
x2n +O

(

|x|2n+2
)

Example 15

Example 16

Let n be any natural number. Since dm

dxm ex = ex for every integer m ≥ 0,

ex = 1 + x+ x2

2!
+ x3

3!
+ · · ·+ xn

n!
+ ec

(n+1)!
xn+1

for some c between 0 and x. If, for example, |x| ≤ 1, then |ec| ≤ e, so that the error term

∣

∣

ec

(n+1)!
xn+1

∣

∣ ≤ C|x|n+1 with C = e
(n+1)!

whenever |x| ≤ 1

So, under Definition 14, with C = e
(n+1)!

and D = 1,

ex = 1 + x+ x2

2!
+ x3

3!
+ · · ·+ xn

n!
+O

(

|x|n+1
)

Example 16

Example 17

Let f(x) = ln(1 + x) and x0 = 0. Then

f ′(x) = 1
1+x

f ′′(x) = − 1
(1+x)2

f (3)(x) = 2
(1+x)3

f (4)(x) = − 2×3
(1+x)4

f (5)(x) = 2×3×4
(1+x)5

f ′(0) = 1 f ′′(0) = −1 f (3)(0) = 2 f (4)(0) = −3! f (5)(0) = 4!

We can see a pattern for f (n)(x) forming here — f (n)(x) is a sign times a ratio with

• the sign being + when n is odd and being − when n is even. So the sign is (−1)n−1.

• The denominator is a power of (1 + x). The power is just n.

• The numerator is a product 2 × 3 × 4 × · · · . The last integer in the power is n − 1, at

least for n ≥ 2. So the product, for n ≥ 2, is 2 × 3 × 4 × · · · × (n − 1). The notation

n!, read “n factorial”, means 1× 2× 3× · · · × n, so the numerator is (n− 1)!, at least

for n ≥ 2. By convention, 0! = 1, so the numerator is (n− 1)! for n = 1 too.
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Thus, for any natural number n,

f (n)(x) = (−1)n−1 (n−1)!
(1+x)n

1
n!
f (n)(0) xn = (−1)n−1 (n−1)!

n!
xn = (−1)n−1 xn

n

so

ln(1 + x) = x− x2

2
+ x3

3
− · · ·+ (−1)n−1 xn

n
+ En(x)

with

En(x) =
1

(n+1)!
f (n+1)(c) (x− x0)

n+1 = (−1)n 1
(n+1)(1+c)n+1x

n+1

If we choose, for example D = 1
2
, then for any x obeying |x| ≤ 1

2
, we have |c| ≤ 1

2
and

|1 + c| ≥ 1
2
so that

|En(x)| ≤ 1
(n+1)(1/2)n+1 |x|n+1 = O

(

|x|n+1
)

under Definition 14, with C = 2n+1

n+1
and D = 1. Thus we may write

ln(1 + x) = x− x2

2
+ x3

3
− · · ·+ (−1)n−1 xn

n
+O

(

|x|n+1
)

(24)

Example 17

The big O notation has a few properties that are useful in computations and taking

limits. All follow immediately from Definition 14.

1. If p > 0, then lim
x→0

O(|x|p) = 0.

2. For any real numbers p and q, O(|x|p) O(|x|q) = O(|x|p+q).

(This is just because C|x|p × C ′|x|q = (CC ′)|x|p+q.)

In particular, axm O(|x|p) = O(|x|p+m), for any constant a and any integer

m.

3. For any real numbers p and q, O(|x|p) +O(|x|q) = O(|x|min{p,q}).

(For example, if p = 2 and q = 5, then C|x|2 + C ′|x|5 =
(

C + C ′|x|3
)

|x|2 ≤
(C + C ′)|x|2 whenever |x| ≤ 1.)

4. For any real numbers p and q with p > q, any function which is O(|x|p) is also
O(|x|q) because C|x|p = C|x|p−q|x|q ≤ C|x|q whenever |x| ≤ 1.

Remark 18.
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12. Evaluating Limits Using Taylor Expansion — Examples

Example 19

In this example we’ll use the Taylor polynomial of Example 17 to evaluate lim
x→0

ln(1+x)
x

and

lim
x→0

(1 + x)a/x. The Taylor expansion (24) with n = 1 tells us that

ln(1 + x) = x+O(|x|2)

That is, for small x, ln(1 + x) is the same as x, up to an error that is bounded by some

constant times x2. So, dividing by x, 1
x
ln(1 + x) is the same as 1, up to an error that is

bounded by some constant times |x|. That is
1
x
ln(1 + x) = 1 +O(|x|)

But any function that is bounded by some constant times |x|, for all x smaller than some

constant D > 0, necessarily tends to 0 as x → 0. Thus

lim
x→0

ln(1+x)
x

= lim
x→0

x+O(|x|2)
x

= lim
x→0

[

1 +O(|x|)
]

= 1

and

lim
x→0

(1 + x)a/x = lim
x→0

e
a/x ln(1+x) = lim

x→0
e
a/x [x+O(|x|2)] = lim

x→0
ea+O(|x|) = ea

Here we have used that if F (x) = O(|x|2), that is if |F (x)| ≤ C|x|2 for some constant C,

then
∣

∣

a
x
F (x)

∣

∣ ≤ C ′|x| for the new constant C ′ = |a|C, so that F (x) = O(|x|). We have also

used that the exponential is continuous — as x tends to zero, the exponent of ea+O(|x|) tends

to a so that ea+O(|x|) tends to ea.
Example 19

Example 20

In this example we’ll evaluate the harder limit

lim
x→0

cosx− 1 + 1
2
x sin x

[ln(1 + x)]4

The first thing to notice about this limit is that, as x tends to zero, the numerator, which

is cosx − 1 + 1
2
x sin x, tends to cos 0 − 1 + 1

2
· 0 · sin 0 = 0 and the denominator [ln(1 + x)]4

tends to [ln(1 + 0)]4 = 0 too. So both the numerator and denominator tend to zero and we

may not simply evaluate the limit of the ratio by taking the limits of the numerator and

denominator and dividing. To find the limit, or show that it does not exist, we are going to

have to exhibit a cancellation between the numerator and the denominator. To develop a

strategy for evaluating this limit, let’s do a “little scratch work”, starting by taking a closer

look at the denominator. By Example 17,

ln(1 + x) = x+O(x2)

This tells us that ln(1+x) looks a lot like x for very small x. So the denominator [x+O(x2)]4

looks a lot like x4 for very small x. Now, what about the numerator?
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• If the numerator looks like some constant times xp with p > 4, for very small x, then the

ratio will look like the constant times xp

x4 = xp−4 and will tend to 0 as x tends to zero.

• If the numerator looks like some constant times xp with p < 4, for very small x, then

the ratio will look like the constant times xp

x4 = xp−4 and will tend to plus or minus ∞
(depending on the sign of the constant) as x tends to zero.

• If the numerator looks like Cx4, for very small x, then the ratio will look like Cx4

x4 = C

and will tend to C as x tends to zero.

The moral of the above “scratch work” is that we need to know the behaviour of the numer-

ator, for small x, up to order x4. Any contributions of order xp with p > 4 may be put into

error terms O(|x|p). Now we are ready to evaluate the limit. Using Examples 15 and 17,

lim
x→0

cos x− 1 + 1
2
x sin x

[ln(1 + x)]4
= lim

x→0

[

1− 1
2
x2 + 1

4!
x4 +O(x6)

]

− 1 + 1
2
x
[

x− 1
3!
x3 +O(|x|5)

]

[x+O(x2)]4

= lim
x→0

( 1
4!
− 1

2×3!
)x4 +O(x6) + x

2
O(|x|5)

[x+O(x2)]4

= lim
x→0

( 1
4!
− 1

2×3!
)x4 +O(x6) +O(x6)

[x+O(x2)]4
by Remark 18, part 2.

= lim
x→0

( 1
4!
− 1

2×3!
)x4 +O(x6)

[x+ xO(|x|)]4 by Remark 18, parts 2, 3.

= lim
x→0

( 1
4!
− 1

2×3!
)x4 + x4O(x2)

x4[1 +O(|x|)]4 by Remark 18, part 2.

= lim
x→0

( 1
4!
− 1

2×3!
) +O(x2)

[1 +O(|x|)]4
= 1

4!
− 1

2×3!
by Remark 18 part 1.

= 1
3!

(

1
4
− 1

2

)

= − 1
4!

Example 20

c© Joel Feldman. 2014. All rights reserved. 21 January 29, 2013


