
Trignometric Substitution

Trigonometric substitution refers simply to substitutions of the form

x = a sin u or x = a tan u or x = a sec u

It is generally used in conjunction with the trignometric identities

sin2 θ + cos2 θ = 1 and 1 + tan2 θ = sec2 θ

to

• eliminate
√
a2 − x2 from an integrand by substituting x = a sin u to give

√
a2 − x2 =

√

a2 − a2 sin2 u =
√
a2 cos2 u = |a cosu| or to

• eliminate
√
a2 + x2 from an integrand by substituting x = a tanu to give

√
a2 + x2 =√

a2 + a2 tan2 u =
√
a2 sec2 u = |a sec u| or to

• eliminate
√
x2 − a2 from an integrand by substituting x = a sec u to give

√
x2 − a2 =√

a2 sec2 u− a2 =
√
a2 tan2 u = |a tanu|.

When we have used substitutions before, we usually gave the new integration variable, u, as

a function of the old integration variable x. Here we are giving the old integration variable,

x, in terms of the new integration variable u. We may do so, as long as we may invert to

get u as a function of x. For example, with x = a sin u, we may take u = arcsin x
a
. This is a

good time for you to review the definitions of arcsin θ, arctan θ and arcsec θ. See the notes

“Inverse Functions”.

Example 1 (
∫ r

a

√
r2 − x2 dx)

Let’s find the area of the shaded region in the sketch below.

a r

x2 + y2 = r2

x

y

We’ll set up the integral using vertical strips. The strip in the figure has width dx and height√
r2 − x2. So the area is

∫ r

a

√
r2 − x2 dx. To evaluate the integral we substitute

x = r sin u dx = r cosu du

because then we will be able to use

r2 − x2 = r2 − r2 sin2 u = r2
(

1− sin2 u
)

= r2 cos2 u
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to eliminate the square root from the integrand. Let’s think about the limits of integration.

Our integral has x running from x = a to x = r. The value of u that corresponds to x = r

is u = π/2 (which solves x = r = r sin u, i.e. which solves sin u = 1) and the value of u

that corresponds to x = a is u = arcsin a/r (which solves x = a = r sin u. i.e. which solves

sin u = a
r
). As u runs from u = arcsin a/r to u = π

2
, x = r sin u runs from x = a to x = r

covering exactly the domain of integration. So we’ll make the domain of integration, in the

u integral, arcsin a/r ≤ u ≤ π
2
. We are now ready to do the integral.

∫ r

a

√
r2 − x2 dx =

∫

π/2

arcsin a/r

√

r2 − r2 sin2 u r cosu du with x = r sin u, dx = r cos u du

=

∫

π/2

arcsin a/r

√
r2 cos2 u r cosu du

=

∫

π/2

arcsin a/r

r2 cos2 u du

Be careful about taking the square root in the last step. Because
√
r2 − x2 denotes the positive

square root of a2 − x2,
√
r2 cos2 u denotes the positive square root of r2 cos2 u. Fortunately,

the domain of integration is contained in 0 ≤ u ≤ π
2
and cosu ≥ 0 there. So r cosu really is

the positive square root of r2 cos2 u in our integral. If our domain of integration had contained

u’s between π
2
and π, for example, we would have needed to write

√
r2 cos2 u = r| cosu|. Now

back to evaluating the integral.

∫ r

a

√
r2 − x2 dx =

∫

π/2

arcsin a/r

r2 cos2 u du

=
r2

2

∫

π/2

arcsin a/r

[

1 + cos(2u)
]

du since cos2 u =
1 + cos(2u)

2

=
r2

2

[

u+
sin(2u)

2

]π/2

arcsin a/r

=
r2

2

[

π

2
− arcsin

a

r
− sin(2 arcsin a/r)

2

]

To simplify sin(2 arcsin a/r)
2

, let’s write arcsin a/r = θ. Then θ is the angle in the triangle on the

right below. By the double angle formula for sin(2θ)

sin(2θ) = 2 sin θ cos θ

θ

r
a

√
r2 − a2

= 2
a

r

√
r2 − a2

r

So our final answer is

Area =

∫ r

a

√
r2 − x2 dx =

πr2

4
− r2

2
arcsin

a

r
− 1

2
a
√
r2 − a2 (1)
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This is a relatively complicated formula, but we can make some “reasonableness” checks, by

looking at special values of a. If a = 0 the shaded region, in the figure at the beginning of

this example, is exactly one quarter of a disk of radius r and so has area 1
4
πr2. Subbing a = 0

into (1) does indeed give 1
4
πr2. At the other extreme, if a = r, the shaded region disappears

completely and so has area 0. Subbing a = r into (1) does indeed give 0, since arcsin 1 = π
2
.

Example 1

Example 2 (
∫ r

a
x
√
r2 − x2 dx)

The integral
∫ r

a
x
√
r2 − x2 dx looks a lot like the integral we just did in Example 1. It can

also be evaluated using the trigonometric substitution x = r sin u. But just because you have

now learned how to use trig substitution doesn’t mean that you should forget everything you

learned before. This integral is much more easily evaluated using the simple substitution

u = r2 − x2.

∫ r

a

x
√
r2 − x2 dx =

∫ 0

r2−a2

√
u

du

−2
with u = r2 − x2, du = −2x dx

= −1

2

[

u3/2

3/2

]0

r2−a2

=
1

3

[

r2 − a2
]3/2

Example 2

Example 3 (
∫

dx
x2

√

9+x2
)

This time we’ll substitute

x = 3 tanu dx = 3 sec2 u du

because then we will be able to use

√
9 + x2 =

√

9 + 9 tan2 u = 3
√

1 + tan2 u = 3
√
sec2 u = 3| sec u|

to eliminate the square root from the integral. Note that, to satisfy x = 3 tanu, we can

take u = arctan x
3
, with “arctan” being the “standard” arctangent that always takes values

between −π/2 and +π/2. So u will always take values between −π/2 and +π/2 and cos u will

always be positive, so that | sec u| = sec u. So our integral

∫

dx

x2
√
9 + x2

=

∫

3 sec2 u du

9 tan2 u 3 sec u
with x = 3 tanu, dx = 3 sec2 u du

=
1

9

∫

sec u

tan2 u
du
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=
1

9

∫

cosu

sin2 u
du since sec u =

1

cosu
and

1

tan2 u
=

cos2 u

sin2 u

=
1

9

∫

dy

y2
with y = sin u, dy = cosu du

= − 1

9y
+ C

= − 1

9 sin u
+ C

The original integral was a function of x, so we still have to rewrite sin u in terms of x.

Remember that x = 3 tanu or u = arctan x
3
. So u is the angle shown in the triangle below

and we can read off the triangle that

sin u =
x√

9 + x2

u

√
9 + x2

x

3=⇒
∫

dx

x2
√
9 + x2

= −
√
9 + x2

9x
+ C

Example 3

Example 4 (
∫ 5

3

√

x2
−2x−3
x−1

dx)

This time we have an integral with a square root in the integrand, but the argument of the

square root, while a quadratic function of x, is not in one of the standard forms
√
a2 − x2,√

a2 + x2,
√
x2 − a2. The reason that it is not in one of those forms is that the argument,

x2−2x−3, contains a term , namely, −2x that is of degree one on x. So we try manipulate it

into one of the standard forms by completing the square, which means that we try to express

x2 − 2x− 3 in the form (x − a)2 + b for some constants a and b. Observe that if we square

out (x − a)2 + b we get x2 − 2ax + a2 + b, which will be exactly x2 − 2x − 3 if we choose a

and b so that −2a = −2 (to give the correct coefficient of x) and a2 + b = −3 (to give the

correct constant term). So a = 1, b = −4 works and we now know that

x2 − 2x− 3 = (x− 1)2 − 4

Then to convert the square root of the integrand into a standard form, we just make the

simple substitution y = x− 1. Here goes

∫ 5

3

√
x2 − 2x− 3

x− 1
dx =

∫ 5

3

√

(x− 1)2 − 4

x− 1
dx

=

∫ 4

2

√

y2 − 4

y
dy with y = x− 1, dy = dx

=

∫ π/3

0

√
4 sec2 u− 4

2 sec u
2 sec u tanu du with y = 2 sec u, dy = 2 sec u tanu du

To get the limits of integration we used that
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• the value of u that corresponds to y = 2 obeys 2 = y = 2 sec u = 2
cosu

or cosu = 1, so

that u = 0 works and

• the value of u that corresponds to y = 4 obeys 4 = y = 2 sec u = 2
cosu

or cos u = 1
2
, so

that u = π/3 works.

Now returning to the evaluation of the integral, we simplify and continue.

∫ 5

3

√
x2 − 2x− 3

x− 1
dx =

∫ π/3

0

2
√
sec2 u− 1 tan u du

= 2

∫ π/3

0

tan2 u du since sec2 u = 1 + tan2 u

= 2

∫ π/3

0

[

sec2 u− 1
]

du since sec2 u = 1 + tan2 u, again

= 2
[

tanu− u
]π/3

0

= 2
[
√
3− π/3

]

Example 4
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