
Substitution

Integrals with simple integrands are usually evaluated by using the fundamental theorem of

calculus. There are a number of tools that are used to convert integrals with complicated

integrands into integrals with simple integrands. The most important such tool is the sub-

stitution rule. The substitution rule is just the chain rule rewritten in terms of integrals.

Suppose that F (u) is a function whose derivative is f(u). That is, F (u) is an antiderivative

for f(u) so that
∫

f(u) du = F (u) + C

Then the chain rule says that, for any function u(x),

d

dx
F
(

u(x)
)

= F ′
(

u(x)
)

u′(x) = f
(

u(x)
)

u′(x)

So F
(

u(x)
)

is one function with derivative f
(

u(x)
)

u′(x) and F
(

u(x)
)

is an antiderivative

for f
(

u(x)
)

u′(x). Thus
∫

f
(

u(x)
)

u′(x) dx = F
(

u(x)
)

+ C or

∫

f
(

u(x)
)

u′(x) dx =

∫

f(u) du
∣

∣

∣

u=u(x)
(1)

The notation on the right hand side means “evaluate
∫

f(u) du and then replace every u by

u(x)”. This is the substitution rule for indefinite integrals. Note that, since f
(

u(x)
)

u′(x), is

a function of x, its indefinite integral must also be a function of x. On the right hand side,

evaluating u at u(x) ensures that we end up with a function of x.

Because F
(

u(x)
)

is one antiderivative of f
(

u(x)
)

u′(x),

∫ b

a

f
(

u(x)
)

u′(x) dx = F
(

u(x)
)

∣

∣

∣

x=b

x=a
= F

(

u(b)
)

− F
(

u(a)
)

The right hand side is F (u) =
∫

f(u) du evaluated at u(b) minus the same function evaluated

at u(a). So
∫ b

a

f
(

u(x)
)

u′(x) dx =

∫ u(b)

u(a)

f(u) du (2)

This is the substitution rule for definite integrals. Notice that to get from the integral on the

left hand side to the integral on the right hand side you

• substitute u(x) → u and u′(x) dx → du (which looks like du
dx

= u′(x) with the dx

multiplied across)

• set the lower limit for the u integral to the value of u (namely u(a)) that corresponds

to the lower limit of the x integral (namely x = a) and

• set the upper limit for the u integral to the value of u (namely u(b)) that corresponds

to the upper limit of the x integral (namely x = b).

The substitution rule is used to simplify integrals, like
∫ π

0
x2 sin

(

1
3
x3
)

dx, in which the inte-

grand

c© Joel Feldman. 2015. All rights reserved. 1 January 29, 2015



• has one factor
(

sin
(

1
3
x3
)

in this example
)

which is some function
(

sin in this example
)

evaluated at some complicated argument
(

1
3
x3 in this example

)

and

• has a second factor
(

x2 in this example
)

which is the derivative of the complicated

argument, or at least a constant times the derivative of the complicated argument.

In this case one chooses u(x) to be the complicated argument
(

so u(x) = 1
3
x3 in this example

)

.

Example 1

The integrand of
∫ 1

0

ex sin
(

ex
)

dx

is ex sin
(

ex
)

. One factor of this integrand is sin
(

ex
)

, which is the function sin evaluated

at ex. The derivative of ex is again ex, which is the other factor in the integrand. Choose

u(x) = ex and f(u) = sin u. Then f
(

u(x)
)

= sin
(

ex
)

and u′(x) = ex so

∫ 1

0

ex sin
(

ex
)

dx =

∫ b

a

f
(

u(x)
)

u′(x) dx

with a = 0 and b = 1. As u(a) = u(0) = e0 = 1 and u(b) = u(1) = e1 = e, the substitution

rule gives

∫ 1

0

ex sin
(

ex
)

dx =

∫ b

a

f
(

u(x)
)

u′(x) dx =

∫ u(b)

u(a)

f(u) du =

∫ e

1

sin u du = − cosu
∣

∣

∣

e

1

= − cos e+ cos 1

In conclusion
∫ 1

0

ex sin
(

ex
)

dx = cos 1− cos e

Example 1

Example 2

The integrand of
∫ 1

0

x2 sin
(

x3 + 1
)

dx

is x2 sin
(

x3 + 1
)

. One factor of this integrand is sin
(

x3 + 1
)

, which is the function sin

evaluated at x3 + 1. So set u(x) = x3 + 1. The derivative u′(x) = 3x2 is not quite the other

factor, x2, in the integrand. But we can arrange for u′(x) = 3x2 to appear as a factor in the

integrand just by multiplying and dividing by 3.

∫ 1

0

x2 sin
(

x3 + 1
)

dx =

∫ 1

0

1
3
sin

(

x3 + 1
)

3x2 dx
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The integrand 1
3
sin

(

x3 + 1
)

3x2 now is of the form f
(

u(x)
)

u′(x) with u(x) = x3 + 1 and

f(u) = 1
3
sin u. The limits of integration are x = 0 and x = 1. So, choosing u(x) = x3 + 1,

f(u) = 1
3
sin u, a = 0 and b = 1 we have

∫ 1

0

1
3
sin

(

x3 + 1
)

3x2 dx =

∫ b

a

f
(

u(x)
)

u′(x) dx =

∫ u(b)

u(a)

f(u) du =

∫ 2

1

1
3
sin u du = −1

3
cosu

∣

∣

∣

2

1

=
− cos 2

3
− − cos 1

3

In conclusion
∫ 1

0

sin
(

x3 + 1
)

x2 dx =
cos 1− cos 2

3

Example 2

Once one has chosen u(x), one can make the substitution without ever explicitly deciding

what f(u) is. One just has to note that the integrand on the right hand side of the substitution

rule
∫ b

a

f
(

u(x)
)

u′(x) dx =

∫ u(b)

u(a)

f(u) du

is constructed from the integrand on the left hand side by

• substituting u for u(x) and

• substituting du for u′(x) dx

The substitution du = u′(x) dx is easily remembered by pretending that du
dx

is an ordinary

fraction. Then cross–multiplying du
dx

= u′(x) gives du = u′(x) dx.

Example 3 (Example 2 revisited)

Consider
∫ 1

0

x2 sin
(

x3 + 1
)

dx

once again. We have observed that one factor of the integrand is sin
(

x3 + 1
)

, which is sin

evaluated at x3 + 1, and the other factor, x2 is, aside from a factor of 3, the derivative of

x3 + 1. So we decide to try u(x) = x3 + 1. Substitute u for x3 + 1 and du for 3x2 dx. That

is x3 + 1 = u and du = 3x2 dx or x2 dx = du
3
. When x = 0, u = 03 + 1 = 1. When x = 1,

u = 13 + 1 = 2. So
∫ 1

0

sin
(

x3 + 1
)

x2dx =

∫ 2

1

sin u du
3

We ended up with exactly this integral in Example 2.

Example 3
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Example 4

Consider
∫

π/2

0
cos(3x) dx. Substitute for the argument of cos(3x). That, is u(x) = 3x. We

are to substitute u = 3x and du = 3 dx or dx = du
3
. When x = 0, u = 3 × 0 = 0 and when

x = π
2
, u = 3

2
π. So

∫

π/2

0

cos(3x) dx =

∫ 3π/2

0

cos(u)
du

3
=

sin u

3

∣

∣

∣

∣

3π/2

0

=
−1

3
− 0

3
= −1

3

Example 4

Example 5

Consider
∫ 1

0
1

(2x+1)3
dx. Substitute for the argument, 2x+1, of [2x+1]−3. That is, u = 2x+1

and du = 2 dx or dx = du
2
. When x = 0, u = 2×0+1 = 1 and when x = 1, u = 2×1+1 = 3.

So
∫ 1

0

1

(2x+ 1)3
dx =

∫ 3

1

1

u3

du

2
=

1

2

∫ 3

1

u−3 du =
1

2

u−2

−2

∣

∣

∣

∣

3

1

=
3−2

−4
− 1−2

−4
=

1

4

[

1− 1

9

]

=
2

9

Example 5

Example 6

Consider
∫ 1

0
x

1+x2 dx. Think of the integrand as the product of 1
1+x2 and x. The first factor

is the function “one over” evaluated at the argument 1 + x2. The derivative of the argu-

ment 1 + x2 is 2x, which is, except for the 2, the second factor of the integrand. Substitute

u = 1 + x2, du = 2x dx or xdx = du
2
. When x = 0, u = 1 + 02 = 1 and when x = 1,

u = 1 + 12 = 2. So
∫ 1

0

x

1 + x2
dx =

∫ 1

0

1

1 + x2
xdx =

∫ 2

1

1

u

du

2
=

1

2
ln |u|

∣

∣

∣

2

1
=

ln 2

2
− 0

2
=

1

2
ln 2

Example 6

Example 7

Consider
∫

x3 cos
(

x4+2
)

dx. The integrand is the product of cos evaluated at the argument

x4 + 2 times x3, which aside from a factor of 4, is the derivative of the argument x4 + 2.

Substitute u = x4 + 2, du = 4x3 dx or x3dx = du
4
.

∫

x3 cos
(

x4 + 2
)

dx =

∫

cos(u)
du

4
=

1

4
sin u+ C

Because we are dealing with indefinite integrals we need not worry about limits of integration.

On the other hand, x3 cos
(

x4+2
)

is a function of x. So its indefinite integral
(

which is defined

c© Joel Feldman. 2015. All rights reserved. 4 January 29, 2015



to be a function whose derivative is x3 cos
(

x4 + 2
) )

must also be a function of x. We must

substitute u = u(x) = x4 + 2 in the answer too. That is what the substitution rule (1) says.

The answer is 1
4
sin u(x) + C = 1

4
sin

(

x4 + 1
)

+ C.

Example 7

Example 8

Consider
∫ √

1 + x2 x3 dx. Substitute for the argument of the square root. That is, substitute

u = 1+x2, du = 2x dx or dx = du
2x
. You might think that this does not eliminate all of the x’s

from
√
1 + x2 x3 dx =

√
ux3 du

2x
=

√
ux2 du

2
. But it does, provided you remember to substitute

x2 = u− 1 for the remaining factor of x2.
∫ √

1 + x2 x3 dx =

∫ √
u(u− 1)

du

2
=

1

2

∫

(

u
3/2 − u

1/2
)

du =
1

2

[u5/2

5/2
− u3/2

3/2

]

+ C

=
1

5
(1 + x2)

5/2 − 1

3
(1 + x2)

3/2
+ C

Don’t forget to express the final answer in terms of x using u = 1 + x2. Also, don’t forget

that you can always check that
∫ √

1 + x2 x3 dx =
1

5
(1 + x2)

5/2 − 1

3
(1 + x2)

3/2
+ C

is correct — just differentiate the right hand side

d

dx

[1

5
(1 + x2)

5/2 − 1

3
(1 + x2)

3/2
+ C

]

=
1

5

5

2
(1 + x2)

3/2
(2x)− 1

3

3

2
(1 + x2)

1/2
(2x)

= x(1 + x2)
3/2 − x(1 + x2)

1/2

= x
√
1 + x2

[

(1 + x2)− 1
]

= x
√
1 + x2 x2 = x3

√
1 + x2

and verify that the derivative is the same as the original integrand.

Example 8

Example 9

Consider
∫

tan x dx. The secret here is to write the integrand tanx = 1
cos x

sin x. Think of

the first factor as the function “one over” evaluated at the argument cosx. The derivative

of the argument cosx is, except for a −1, the same as the second factor sin x. Substitute

u = cos x, du = − sin x dx or sin x dx = du
−1

.
∫

tanx dx =

∫

1

cosx
sin x dx =

∫

1

u

du

−1
= − ln |u|+ C = − ln | cosx|+ C

= ln | cosx|−1 + C = ln | sec x|+ C

Example 9
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