
Integration by Parts

“Integration by parts” is just the product rule translated into the language of integrals.

Recall that the product rule says

d

dx
u(x)v(x) = u′(x) v(x) + u(x) v′(x)

This tells us that
∫

[

u′(x) v(x) + u(x) v′(x)
]

dx =
[

a function with derivative u′v + uv′
]

+ C

= u(x)v(x) + C

Let u(x) and v(x) be continuously differentiable. Then

∫

u(x) v′(x) dx = u(x) v(x)−

∫

v(x) u′(x) dx

or, writing dv for v′(x) dx and du for u′(x) dx

∫

u dv = u v −

∫

v du

The corresponding statement for definite integrals is

∫

b

a

u(x) v′(x) dx = u(b) v(b)− u(a) v(a)−

∫

b

a

v(x) u′(x) dx

Theorem 1.

Integration by parts is often used

• to eliminate a ln x from an integrand by using that d

dx
ln x = 1

x
and

• to eliminate factors of x from an integrand like xex by using that d

dx
x = 1 and

• to eliminate inverse trig functions, like tan−1 x, from an integrand by using that, for

example, d

dx
tan−1 x = 1

1+x2 .

Example 2 (
∫

ln x dx)

We don’t know an antiderivative for ln x, i.e. a function whose derivative is ln x. So we want

to eliminate ln x from the integrand. We may do so by integrating by parts with u = ln x. The

point of doing so is that the integrand on the right hand side, uv−
∫

v du, of the integration

by parts formula contains du = u′(x) dx = dx

x
, instead of u(x) = ln x.
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The first step in implementing this strategy is to write the integral of interest in the form,
∫

u dv, of the left hand side of the integration by parts formula.

∫

lnx dx =

∫

u dv with u = ln x, dv = dx

Next we need a function v(x) obeying dv = v′(x) dx = dx, i.e. obeying v′(x) = 1. Any

function will do. We’ll chose the simplest one, namely v(x) = x. We’re now ready to

evaluate the integral.
∫

ln x dx =

∫

u dv with u = ln x, dv = dx

= uv −

∫

v du with v = x, du =
1

x
dx

= x ln x−

∫

x
1

x
dx

= x ln x− x+ C

As always, it is a good idea to check our result by verifying that the derivative of the answer

really is the integrand.

d

dx

[

x ln x− x+ C
]

= ln x+ x
1

x
− 1 + 0 = ln x

Example 2

Example 3 (
∫

x ln x dx)

Once again, we want to eliminate ln x from the integrand. So we again integrate by parts

with u = ln x.
∫

x ln x dx =

∫

u dv with u = ln x, dv = x dx

= uv −

∫

v du with v =
x2

2
, du =

1

x
dx

=
x2

2
ln x−

∫

x2

2

1

x
dx

=
x2

2
ln x−

x2

4
+ C

Checking:

d

dx

[x2

2
ln x−

x2

4
+ C

]

= x ln x+
x2

2

1

x
−

x

2
+ 0 = x ln x

Example 3
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Example 4 (
∫

xex dx)

We not not know an indefinite integral for xex, but we do know one for ex. So it would be

nice to eliminate the x from the integrand. We may do so by integrating by parts with u = x,

since then du = dx.
∫

xex dx =

∫

u dv with u = x, dv = ex dx

= uv −

∫

v du with v = ex, du = dx

= xex −

∫

ex dx

= xex − ex + C

Checking:

d

dx

[

xex − ex + C
]

= ex + xex − ex + 0 = xex

Example 4

Example 5 (
∫

x2ex dx)

Integrating by parts with u = x2 does not eliminate the x2 completely, but at least it reduces

the power of x, leaving us with an integral that we can handle.

∫

x2ex dx =

∫

u dv with u = x2, dv = ex dx

= uv −

∫

v du with v = ex, du = 2x dx

= x2ex −

∫

2xex dx

= x2ex − 2xex + 2ex + C by Example 4

Example 5

Example 6 (tan−1 x dx)

This time, we want to eliminate tan−1 x from the integrand, because we don’t know how to

integrate it. So we integrate by parts with u = tan−1 x.

∫

tan−1 x dx =

∫

u dv with u = tan−1 x, dv = dx

= uv −

∫

v du with v = x, du =
1

1 + x2
dx
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= x tan−1 x−

∫

x

1 + x2
dx

= x tan−1 x−

∫

1

y

dy

2
with y = 1 + x2, dy = 2x dx

= x tan−1 x−
1

2
ln(1 + x2) + C

Checking:

d

dx

[

x tan−1 x−
1

2
ln(1 + x2) + C

]

= tan−1 x+
x

1 + x2
−

1

2

2x

1 + x2
+ 0 = tan−1 x

Example 6

Example 7 (
∫

b

a
ex sin x dx and

∫

b

a
ex cosx dx)

This time we’re going to do the two integrals

I1 =

∫

b

a

ex sin x dx I2 =

∫

b

a

ex cosx dx

at more or less the same time. First

I1 =

∫

b

a

ex sin x dx =

∫

b

a

u dv with u = ex, dv = sin x dx

= uv

∣

∣

∣

b

a

−

∫

b

a

v du with v = − cosx, du = ex dx

=
[

− ex cos x
]b

a

+

∫

b

a

ex cosx dx

We have not found I1 but we have related it to I2.

I1 =
[

− ex cosx
]b

a

+ I2 (1)

Now start over with I2.

I2 =

∫

b

a

ex cosx dx =

∫

b

a

u dv with u = ex, dv = cosx dx

= uv

∣

∣

∣

b

a

−

∫

b

a

v du with v = sin x, du = ex dx

=
[

ex sin x
]b

a

−

∫

b

a

ex sin x dx

Once again, we have not found I2 but we have related it back to I1.

I2 =
[

ex sin x
]b

a

− I1 (2)
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If we now substitute (2) into (1) we get

I1 =
[

− ex cos x+ ex sin x
]b

a

− I1 =⇒ I1 =
1

2

[

ex
(

sin x− cosx
)

]b

a

(3)

and if we substitute (1) into (2) we get

I2 =
[

ex sin x+ ex cosx
]b

a

− I2 =⇒ I2 =
1

2

[

ex
(

sin x+ cosx
)

]b

a

(4)

That is,

∫

b

a

ex sin x dx =
1

2

[

ex
(

sin x− cosx
)

]b

a

∫

b

a

ex cosx dx =
1

2

[

ex
(

sin x+ cosx
)

]b

a

This also says, for example, that 1

2
ex
(

sin x− cosx
)

is an antiderivative of ex sin x so that

∫

ex sin x dx =
1

2
ex
(

sin x− cosx
)

+ C

Note that we can always check whether or not this is correct. It is correct if and only if the

derivative of the right hand side is ex sin x. Here goes. By the product rule

d

dx

[1

2
ex
(

sin x− cosx
)

+ C
]

=
1

2

[

ex
(

sin x− cos x
)

+ ex
(

cosx+ sin x
)

]

= ex sin x

which is the desired derivative.

There is another way to find
∫

ex sin x dx and
∫

ex cosx dx that, in contrast to the above

computations, doesn’t involve any trickery. But it does require the use of complex numbers

and so is beyond the scope of this course. The secret is to use that sin x = e
ix
−e

−ix

2i
and

cosx = e
ix+e

−ix

2
, where i is the square root of −1 of the complex number system.

Example 7
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