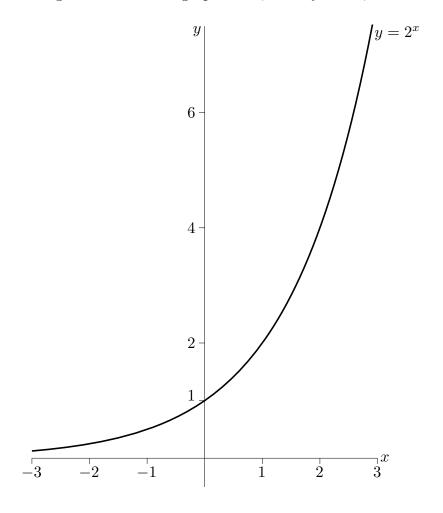
Properties of Exponentials

In the following, x and y are arbitrary real numbers, a and b are arbitrary constants that are strictly bigger than zero and e is 2.7182818284, to ten decimal places.

1)
$$e^0 = 1$$
, $a^0 = 1$

2)
$$e^{x+y} = e^x e^y$$
, $a^{x+y} = a^x a^y$

3)
$$e^{-x} = \frac{1}{e^x}$$
, $a^{-x} = \frac{1}{a^x}$


4)
$$(e^x)^y = e^{xy}$$
, $(a^x)^y = a^{xy}$

5)
$$\frac{d}{dx}e^x = e^x$$
, $\frac{d}{dx}e^{g(x)} = g'(x)e^{g(x)}$, $\frac{d}{dx}a^x = (\ln a) a^x$

6)
$$\int e^x dx = e^x + C$$
, $\int e^{ax} dx = \frac{1}{a}e^{ax} + C$ if $a \neq 0$

7)
$$\lim_{x \to \infty} e^x = \infty, \lim_{x \to -\infty} e^x = 0$$
$$\lim_{x \to \infty} a^x = \infty, \lim_{x \to -\infty} a^x = 0 \text{ if } a > 1$$
$$\lim_{x \to \infty} a^x = 0, \lim_{x \to -\infty} a^x = \infty \text{ if } 0 < a < 1$$

8) The graph of 2^x is given below. The graph of a^x , for any a > 1, is similar.

Properties of Logarithms

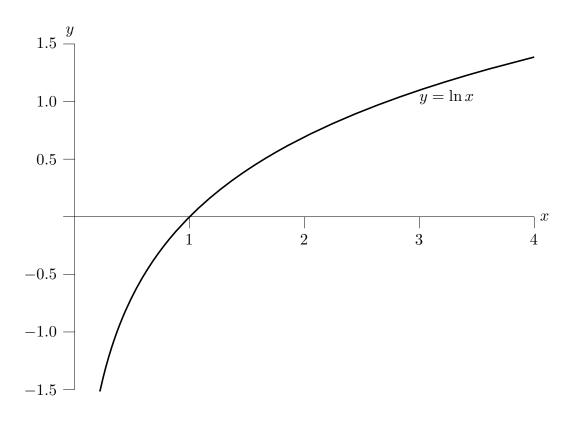
In the following, x and y are arbitrary real numbers that are strictly bigger than 0, a is an arbitrary constant that is strictly bigger than one and e is 2.7182818284, to ten decimal places.

1)
$$e^{\ln x} = x$$
, $a^{\log_a x} = x$, $\log_e x = \ln x$, $\log_a x = \frac{\ln x}{\ln a}$

2)
$$\log_a(a^x) = x$$
, $\ln(e^x) = x$
 $\ln 1 = 0$, $\log_a 1 = 0$
 $\ln e = 1$, $\log_a a = 1$

3)
$$\ln(xy) = \ln x + \ln y$$
, $\log_a(xy) = \log_a x + \log_a y$

4)
$$\ln\left(\frac{x}{y}\right) = \ln x - \ln y$$
, $\log_a\left(\frac{x}{y}\right) = \log_a x - \log_a y$
 $\ln\left(\frac{1}{y}\right) = -\ln y$, $\log_a\left(\frac{1}{y}\right) = -\log_a y$,


5)
$$\ln(x^y) = y \ln x$$
, $\log_a(x^y) = y \log_a x$

6)
$$\frac{d}{dx} \ln x = \frac{1}{x}, \frac{d}{dx} \ln(g(x)) = \frac{g'(x)}{g(x)}, \frac{d}{dx} \log_a x = \frac{1}{x \ln a}$$

7)
$$\int \frac{1}{x} dx = \ln|x| + C$$
, $\int \ln x \, dx = x \ln x - x + C$

8)
$$\lim_{x \to \infty} \ln x = \infty, \lim_{x \to 0} \ln x = -\infty$$
$$\lim_{x \to \infty} \log_a x = \infty, \lim_{x \to 0} \log_a x = -\infty$$

9) The graph of $\ln x$ is given below. The graph of $\log_a x$, for any a > 1, is similar.

