
Simple Numerical Integrators – Derivation

These notes provide derivations of three simple algorithms for generating, numerically, ap-

proximate values for the definite integral
∫ b

a
f(x) dx . In each algorithm, we first select an integer

n, called the “number of steps”. We then divide the interval of integration, a ≤ x ≤ b into n equal

subintervals, each of size ∆x = b−a
n

. The end points of these intervals are x0 = a, x1 = a+∆x, x2 =

x

y

x1 x2 x3 · · ·

y = f(x)

a = x0 xn = bxn−1

a + 2∆x, · · · , xn−1 = b−∆x, xn = b. The corresponding decomposition of the integral is

∫ b

a

f(x) dx =

∫ x1

x0

f(x) dx +

∫ x2

x1

f(x) dx + · · · +

∫ xn

xn−1

f(x) dx

Each subintegral
∫ xj

xj−1

f(x) dx is approximated by the area of a simple geometric figure. The three

different algorithms use three different figures.

The Midpoint Rule

The integral
∫ xj

xj−1

f(x) dx represents the area under the curve y = f(x) with x running from

xj−1 to xj . The width of this region is xj − xj−1. The height varies over the different values that

f(x) takes as x runs from xj−1 to xj . The Midpoint Rule approximates this area by the area of a

rectangle of width xj − xj−1 = ∆x and height f
(xj−1+xj

2

)

, which is the exact height at the midpoint

of the range of x. The area of the approximating rectangle is f
(xj−1+xj

2

)

∆x. To save writing, set

xj−1 xj

f(xj)

f(xj−1)

x̄jxj−1 xj

f
(xj−1+xj

2

)

x̄j =
xj−1+xj

2 So the Midpoint Rule approximates each subintegral by
∫ xj

xj−1

f(x) dx ≈ f(x̄j)∆x
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and the full integral by

∫ b

a

f(x) dx =

∫ x1

x0

f(x) dx +

∫ x2

x1

f(x) dx + · · · +

∫ xn

xn−1

f(x) dx

≈ f(x̄1)∆x + f(x̄2)∆x + · · · + f(x̄n)∆x

In summary, the Midpoint Rule approximates

∫ b

a
f(x) dx ≈

[

f(x̄1) + f(x̄2) + · · · + f(x̄n)
]

∆x

where

∆x = b−a
n

, x0 = a, x1 = a + ∆x, x2 = a + 2∆x, · · · , xn−1 = b−∆x, xn = b

x̄1 = x0+x1

2 , x̄2 = x1+x2

2 , · · · , x̄n = xn−1+xn

2

For example, here is the approximation for
∫ π

0
sinx dx with n = 8. First note that a = 0,

b = π, ∆x = π
8

and

x0 = 0 x1 = π
8

x2 = 2π
8

· · · x7 = 7π
8

x8 = 8π
8

= π

Consequently,

x̄1 = π
16

x̄2 = 3π
16

· · · x̄7 = 13π
16

x̄8 = 15π
16

and

∫ π

0

sinx dx ≈
[

sin(x̄1) + sin(x̄2) + · · · + sin(x̄8)
]

∆x

=
[

sin( π
16

) + sin( 3π
16

) + sin( 5π
16

) + sin( 7π
16

) + sin( 9π
16

) + sin( 11π
16

) + sin( 13π
16

) + sin( 15π
16

)
]

π
8

=
[

0.1951 + 0.5556 + 0.8315 + 0.9808 + 0.9808 + 0.8315 + 0.5556 + 0.1951
]

× 0.3927

= 5.1260× 0.3927

= 2.013

The exact answer is
∫ π

0
sinx dx = − cosx

∣

∣

∣

π

0
= 2. So with eight steps of the Midpoint Rule we achieved

100 2.013−2
2

= 0.65% accuracy.

The Trapezoidal Rule

The Trapezoidal Rule approximates
∫ xj

xj−1

f(x) dx by the area of a trapezoid. A trapezoid

is a four sided polygon, like a rectangle. But, unlike a rectangle, the top and bottom of a trapezoid

need not be parallel. The trapezoid used to approximate
∫ xj

xj−1

f(x) dx has width xj −xj−1 = ∆x. Its

left hand side has height f(xj−1) and its right hand side has height f(xj). The area of a trapezoid is
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xj−1 xj

f(xj)

f(xj−1)

xj−1 xj

f(xj)

f(xj−1)

its width times its average height. So the Trapezoidal Rule approximates

∫ xj

xj−1

f(x) dx ≈
f(xj−1)+f(xj)

2 ∆x

and the full integral by

∫ b

a

f(x) dx =

∫ x1

x0

f(x) dx +

∫ x2

x1

f(x) dx + · · · +

∫ xn

xn−1

f(x) dx

≈
f(x0)+f(x1)

2 ∆x + f(x1)+f(x2)
2 ∆x + · · · + f(xn−1)+f(xn)

2 ∆x

=
[

1
2
f(x0) + f(x1) + f(x2) + · · · + f(xn−1) + 1

2
f(xn)

]

∆x

In summary, the Trapezoidal Rule approximates

∫ b

a
f(x) dx ≈

[

1
2
f(x0) + f(x1) + f(x2) + · · · + f(xn−1) + 1

2
f(xn)

]

∆x

where

∆x = b−a
n

, x0 = a, x1 = a + ∆x, x2 = a + 2∆x, · · · , xn−1 = b−∆x, xn = b

As an example we again approximate
∫ π

0
sinx dx with n = 8. We still have a = 0, b = π, ∆x = π

8 and

x0 = 0 x1 = π
8 x2 = 2π

8 · · · x7 = 7π
8 x8 = 8π

8 = π

Consequently,

∫ π

0

sinx dx ≈
[

1
2

sin(x0) + sin(x1) + · · · + sin(x7) + 1
2

sin(x8)
]

∆x

=
[

1
2

sin(0) + sin(π
8
) + sin( 2π

8
) + sin( 3π

8
) + sin( 4π

8
) + sin( 5π

8
) + sin( 6π

8
) + sin( 7π

8
) + 1

2
sin( 8π

8
)
]

π
8

=
[

1
2 × 0 + 0.3827 + 0.7071 + 0.9239 + 1.0000 + 0.9239 + 0.7071 + 0.3827 + 1

2 × 0
]

× 0.3927

= 5.0274× 0.3927

= 1.974

The exact answer is
∫ π

0
sinx dx = − cosx

∣

∣

∣

π

0
= 2. So with eight steps of the Trapezoidal Rule we

achieved 100 |1.974−2|
2

= 1.3% accuracy.
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Simpson’s Rule

Simpson’s Rule approximates
∫ x2

x0

f(x) dx by the area under the part of a parabola with x

running from x0 to x2. The parabola used passes through the three points
(

x0, f(x0)
)

,
(

x1, f(x1)
)

and
(

x2, f(x2)
)

. It then approximates
∫ x4

x2

f(x) dx by the area under the part of a parabola with

x0 x1 x2

(

x0, f(x0)
)

(

x1, f(x1)
)

(

x2, f(x2)
)

x2 ≤ x ≤ x4. This parabola passes through the three points
(

x2, f(x2)
)

,
(

x3, f(x3)
)

and
(

x4, f(x4)
)

.

And so on. Because Simspon’s rule does the approximation two slices at a time, n must be even.

To derive Simpson’s rule formula, we first find the equation of the parabola that passes

through the three points
(

x0, f(x0)
)

,
(

x1, f(x1)
)

and
(

x2, f(x2)
)

. Then we find the area under the

part of that parabola with x0 ≤ x ≤ x2. We can make the formulae look less complicated by writing

the equation of the parabola in the form

y = A(x− x1)
2 + B(x− x1) + C

The three points
(

x0, f(x0)
)

,
(

x1, f(x1)
)

and
(

x2, f(x2)
)

lie on this parabola if and only if

A
(

x0 − x1)
2 + B(x0 − x1) + C = f(x0)

A
(

x1 − x1)
2 + B(x1 − x1) + C = f(x1)

A
(

x2 − x1)
2 + B(x2 − x1) + C = f(x2)

Because x1 − x1 = 0, the middle equation simplifies to C = f(x1). Because x0 − x1 = −∆x,

x2 − x1 = ∆x and C = f(x1), the first and third equations simplify to

∆x2 A−∆xB = f(x0)− f(x1)

∆x2 A + ∆xB = f(x2)− f(x1)

Adding the two equations together gives 2∆x2 A = f(x0) − 2f(x1) + f(x2). Subtracting the first

equation from the second gives 2∆xB = f(x2)− f(x0). We now know the desired parabola.

A = 1
2∆x2

(

f(x0)− 2f(x1) + f(x2)
)

B = 1
2∆x

(

f(x2)− f(x0)
)

C = f(x1)
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The area under the part of this parabola with x0 ≤ x ≤ x2 is
∫ x2

x0

[

A(x− x1)
2 + B(x− x1) + C

]

dx =

∫ ∆x

−∆x

[

At2 + Bt + C
]

dt where t = x− x1

= 2

∫ ∆x

0

[

At2 + C
]

dt since Bt is odd and At2 + C is even

= 2
[

1
3At3 + Ct

]∆x

0

= 2
3A∆x3 + 2C∆x

= 1
3
∆x

[

f(x0)− 2f(x1) + f(x2)
]

+ 2f(x1)∆x

= 1
3∆x

[

f(x0) + 4f(x1) + f(x2)
]

So Simpson’s rule approximates
∫ x2

x0

f(x) dx ≈ 1
3∆x

[

f(x0) + 4f(x1) + f(x2)
]

and
∫ x4

x2

f(x) dx ≈ 1
3
∆x

[

f(x2) + 4f(x3) + f(x4)
]

and so on. All together
∫ b

a

f(x) dx =

∫ x2

x0

f(x) dx +

∫ x4

x2

f(x) dx +

∫ x6

x4

f(x) dx + · · · +

∫ xn

xn−2

f(x) dx

≈
∆x
3

[

f(x0) + 4f(x1) + f(x2)
]

+ ∆x
3

[

f(x2) + 4f(x3) + f(x4)
]

+ ∆x
3

[

f(x4) + 4f(x5) + f(x6)
]

+ · · · + ∆x
3

[

f(xn−2) + 4f(xn−1) + f(xn)
]

=
[

f(x0)+ 4f(x1)+ 2f(x2)+ 4f(x3)+ 2f(x4)+ · · · + 2f(xn−2)+ 4f(xn−1)+ f(xn)
]

∆x
3

In summary, Simpson’s rule approximates

∫ b

a
f(x) dx ≈

[

f(x0)+ 4f(x1)+ 2f(x2)+ 4f(x3)+ 2f(x4)+ · · · + 2f(xn−2)+ 4f(xn−1)+ f(xn)
]

∆x
3

where n is even and

∆x = b−a
n

, x0 = a, x1 = a + ∆x, x2 = a + 2∆x, · · · , xn−1 = b−∆x, xn = b

As an example we approximate
∫ π

0
sinx dx with n = 8, yet again. Under Simpson’s rule

∫ π

0

sinx dx ≈
[

sin(x0) + 4 sin(x1) + 2 sin(x2) + · · · + 4 sin(x7) + sin(x8)
]

∆x
3

=
[

sin(0) + 4 sin(π
8 ) + 2 sin( 2π

8 ) + 4 sin( 3π
8 ) + 2 sin( 4π

8 )

+ 4 sin( 5π
8 ) + 2 sin( 6π

8 ) + 4 sin( 7π
8 ) + sin( 8π

8 )
]

π
8×3

=
[

0 + 4× 0.382683 + 2× 0.707107 + 4× 0.923880 + 2× 1.0

+ 4× 0.923880 + 2× 0.707107 + 4× 0.382683 + 0
]

π
8×3

= 15.280932× 0.130900

= 2.00027

5



With only eight steps of Simpson’s rule we achieved 100 2.00027−2
2

= 0.014% accuracy.

These notes have derived the midpoint, trapezoidal and Simpson’s rules for approximating

the values of definite integrals. So far we have not attempted to see how efficient and how accurate the

algorithms are. A first look at those questions is provided in the notes “Simple Numerical Integrators

– Error Behaviour”.

6


