Long Division of Polynomials

Suppose that \(P(x) \) is a polynomial of degree \(p \) and suppose that you know that \(r \) is a root of that polynomial. In other words, suppose you know that \(P(r) = 0 \). Then it is always possible to factor \((x - r) \) out of \(P(x) \). More precisely, it is always possible to find a polynomial \(Q(x) \) of degree \(p - 1 \) such that

\[
P(x) = (x - r)Q(x)
\]

In sufficiently simple cases, you can probably do this factoring by inspection. For example, \(P(x) = x^2 - 4 \) has \(r = 2 \) as a root because \(P(2) = 2^2 - 4 = 0 \). In this case, \(P(x) = (x - 2)(x + 2) \) so that \(Q(x) = (x + 2) \). As another example, \(P(x) = x^2 - 2x - 3 \) has \(r = -1 \) as a root because \(P(-1) = (-1)^2 - 2(-1) - 3 = 1 + 2 - 3 = 0 \). In this case, \(P(x) = (x + 1)(x - 3) \) so that \(Q(x) = (x - 3) \).

Once you have found a root \(r \) of a polynomial, even if you cannot factor \((x - r) \) out of the polynomial by inspection, you can find \(Q(x) \) by dividing \(P(x) \) by \(x - r \), using the long division algorithm you learned in public school, but with 10 replaced by \(x \).

Example. \(P(x) = x^3 - x^2 + 2 \).

Because \(P(-1) = (-1)^3 - (-1)^2 + 2 = -1 - 1 + 2 = 0 \), \(r = -1 \) is a root of this polynomial. So we divide \(x^3 - x^2 + 2 \). The first term, \(x^2 \), in the quotient is chosen so that when you multiply it by the denominator, \(x^2(x + 1) = x^3 + x^2 \), the leading term, \(x^3 \), matches the leading term in the numerator, \(x^3 - x^2 + 2 \), exactly.

\[
x + 1 \quad \overline{x^2} \quad \frac{x^3 - x^2 + 2}{x^3 + x^2}
\]

When you subtract \(x^2(x + 1) = x^3 + x^2 \) from the numerator \(x^3 - x^2 + 2 \) you get the remainder \(-2x^2 + 2 \). Just like in public school, the 2 is not normally “brought down” until it is actually needed.

\[
x + 1 \quad \overline{x^2} \quad \frac{x^3 - x^2 + 2}{x^3 + x^2 - 2x^2}
\]

The next term, \(-2x \), in the quotient is chosen so that when you multiply it by the denominator, \(-2x(x + 1) = -2x^2 - 2x \), the leading term \(-2x^2 \) matches the leading term in the remainder exactly.

\[
x + 1 \quad \overline{x^2 - 2x} \quad \frac{x^3 - x^2 + 2}{x^3 + x^2 - 2x^2 - 2x}
\]

And so on.

\[
x + 1 \quad \overline{x^2 - 2x + 2} \quad \frac{x^3 - x^2 + 2}{x^3 + x^2 - 2x^2 - 2x}
\]

\[
x + 1 \quad \overline{2x + 2} \quad \frac{x^3 - x^2 + 2}{x^3 + x^2 - 2x^2 - 2x}
\]

\[
x + 1 \quad \overline{2x + 2} \quad \frac{x^3 - x^2 + 2}{x^3 + x^2 - 2x^2 - 2x + 2}
\]

\[
x + 1 \quad \overline{0} \quad \frac{x^3 - x^2 + 2}{x^3 + x^2 - 2x^2 - 2x + 2}
\]

Note that we finally end up with a remainder \(0 \). Since \(-1\) is a root of the numerator, \(x^3 - x^2 + 2 \), the denominator \(x - (-1) \) must divide the numerator exactly.

There is an alternative to long division that involves more writing. In the previous example, we know
that \(\frac{x^3-x^2+2}{x+1} \) must be a polynomial (since \(-1\) is a root of the numerator) of degree 2. So

\[
\frac{x^3-x^2+2}{x+1} = ax^2 + bx + c
\]

for some, as yet unknown, coefficients \(a, b \) and \(c \). Cross multiplying and simplifying

\[
x^3 - x^2 + 2 = (ax^2 + bx + c)(x + 1)
\]

\[
= ax^3 + (a + b)x^2 + (b + c)x + c
\]

Matching coefficients of the various powers of \(x \) on the left and right hand sides

- coefficient of \(x^3 \): \(a = 1 \)
- coefficient of \(x^2 \): \(a + b = -1 \)
- coefficient of \(x^1 \): \(b + c = 0 \)
- coefficient of \(x^0 \): \(c = 2 \)

tells us directly that \(a = 1 \) and \(c = 2 \). Subbing \(a = 1 \) into \(a + b = -1 \) tells us that \(1 + b = -1 \) and hence \(b = -2 \).