Announcements

- Final exam review session: Thursday, Dec 5, 10:30am - 12pm in MATH 100
- Please fill out the teaching evaluations!
- If you are interested in undergraduate summer research opportunities, now is the time to start looking for a faculty, and to apply for a USRA or a Work Learn International undergraduate fellowship!

Stay tuned for:
- Extra office hours next week
- The problem set (just for exercise)
The power method

Given an \(n \times n \) matrix \(A \) with eigenvalues \(\lambda_1, \ldots, \lambda_n \) and corresponding eigenvectors \(v_1, \ldots, v_n \) such that

- \(|\lambda_1| > |\lambda_2| \geq \cdots \geq |\lambda_n| \)
- \(\{v_1, \ldots, v_n\} \) is an eigenbasis
- \(||v_i||_2 = 1 \) for all \(j = 1, \ldots, n. \)
The power method

Given an \(n \times n \) matrix \(A \) with eigenvalues \(\lambda_1, \ldots, \lambda_n \) and corresponding eigenvectors \(v_1, \ldots, v_n \) such that

- \(|\lambda_1| > |\lambda_2| \geq \cdots \geq |\lambda_n|\)
- \(\{v_1, \ldots, v_n\} \) is an eigenbasis
- \(\|v_i\|_2 = 1 \) for all \(j = 1, \ldots, n \).

Given \(x_0 = c_1 v_1 + c_2 v_2 + \cdots + c_n v_n \), where \(c_1 \neq 0 \), we have that

\[
A^k x_0 = c_1 \lambda_1^k v_1 + \cdots + c_n \lambda_n^k v_n
\]

\[
= \lambda_1^k \left(c_1 v_1 + c_2 \left(\frac{\lambda_2}{\lambda_1} \right)^k v_2 + \cdots + c_n \left(\frac{\lambda_n}{\lambda_1} \right)^k v_n \right)
\]

\[
= \lambda_1^k \left(c_1 v_1 + \varepsilon_k \right), \text{ where } \varepsilon_k \to 0 \text{ as } k \to \infty.
\]
The power method

Given an $n \times n$ matrix A with eigenvalues $\lambda_1, \ldots, \lambda_n$ and corresponding eigenvectors v_1, \ldots, v_n such that

- $|\lambda_1| > |\lambda_2| \geq \cdots \geq |\lambda_n|$
- $\{v_1, \ldots, v_n\}$ is an eigenbasis
- $\|v_i\|_2 = 1$ for all $j = 1, \ldots, n$.

Given $x_0 = c_1 v_1 + c_2 v_2 + \cdots + c_n v_n$, where $c_1 \neq 0$, we have that

$$A x_0 = c_1 \lambda_1 v_1 + \cdots + c_n \lambda_n v_n$$

Thus,

$$A^k x_0 = c_1 \lambda_1^k v_1 + c_2 \lambda_2^k v_2 + \cdots + c_n \lambda_n^k v_n$$

$$= \lambda_1^k \left(c_1 v_1 + c_2 \left(\frac{\lambda_2}{\lambda_1} \right)^k v_2 + \cdots + c_n \left(\frac{\lambda_n}{\lambda_1} \right)^k v_n \right)$$

$$= \lambda_1^k (c_1 v_1 + \varepsilon_k), \text{ where } \varepsilon_k \to 0 \text{ as } k \to \infty.$$
The power method

Algorithm:

Input: Matrix A; random $x_0 \neq 0$; max number of iterations N.

Iterate: for $k = 1 : N$
\[
x_k = A x_{k-1}; \quad x_k = \frac{x_k}{\|x_k\|};
\]
end

Output: $v_1 = x_N$, $\lambda_1 = \langle v_1, Av_1 \rangle$.
Can we find any other eigenvectors/eigenvalues?

Given $s \in \mathbb{R}$, how can we find the closest eigenvalues to s?

Proposition: Let $s \in \mathbb{R}$, and suppose that A is $n \times n$ with real eigenvalues, and corresponding eigenbasis $\{v_1, \ldots, v_n\}$. Then, one of the following holds:

(a) s is an eigenvalue of A, i.e. $A - sl$ is not invertible; OR

(b) the eigenvalues of $(A - sl)^{-1}$ are exactly $\frac{1}{\lambda_1 - s}, \ldots, \frac{1}{\lambda_n - s}$, and the corresponding eigenvectors are still v_1, \ldots, v_n.

Proof: on board.
Can we find any other eigenvectors/eigenvalues?

Given \(s \in \mathbb{R} \), how can we find the closest eigenvalues to \(s \)?

Proposition: Let \(s \in \mathbb{R} \), and suppose that \(A \) is \(n \times n \) with real eigenvalues, and corresponding eigenbasis \(\{v_1, \ldots, v_n\} \). Then, one of the following holds:

(a) \(s \) is an eigenvalue of \(A \), i.e. \(A - sI \) is not invertible; OR

(b) the eigenvalues of \((A - sI)^{-1} \) are exactly \(\frac{1}{\lambda_1 - s}, \ldots, \frac{1}{\lambda_n - s} \), and the corresponding eigenvectors are still \(v_1, \ldots, v_n \).

Proof: on board.

Consequence: the eigenvalues of \((A - \lambda I)^{-1} \) are \(\frac{1}{\lambda_1 - s}, \ldots, \frac{1}{\lambda_n - s} \), therefore, the dominant eigenvalue is \(\frac{1}{\lambda_j - s} \) if and only if

\[\frac{1}{|\lambda_j - s|} > \frac{1}{|\lambda_i - s|}, \quad \forall i \neq j \]

\[\Leftrightarrow |\lambda_j - s| < |\lambda_i - s|, \quad \forall i \neq j, \]

i.e. \(\lambda_j \) is closest to \(s \)!
The closest eigenvalue to $s \in \mathbb{R}$.

Given $s \in \mathbb{R}$, we can use the power method on $(A - sI)^{-1}$ to get the eigenvector v_j that corresponds to the λ_j closest to s (if such a λ_j is unique). To get λ_j, just compute $\langle v_j, Av_j \rangle$.

How do we find the smallest $|\lambda_j|$?

Choose $s = 0$, and perform the power method on A^{-1}!
The closest eigenvalue to $s \in \mathbb{R}$.

Given $s \in \mathbb{R}$, we can use the power method on $(A - sl)^{-1}$ to get the eigenvector v_j that corresponds to the λ_j closest to s (if such a λ_j is unique). To get λ_j, just compute $\langle v_j, Av_j \rangle$.

power iterations: $x_{k+1} = (A - sl)^{-1}x_k$,
in MATLAB: $x = (A - s \ast \text{eye}(n))\backslash x$.
The closest eigenvalue to $s \in \mathbb{R}$.

Given $s \in \mathbb{R}$, we can use the power method on $(A - sl)^{-1}$ to get the eigenvector v_j that corresponds to the λ_j closest to s (if such a λ_j is unique). To get λ_j, just compute $\langle v_j, Av_j \rangle$.

Power iterations: $x_{k+1} = (A - sl)^{-1}x_k$,

in MATLAB: $x = (A - s \times \text{eye}(n)) \backslash x$.

How do we find the smallest $|\lambda_j|$?
The closest eigenvalue to \(s \in \mathbb{R} \).

Given \(s \in \mathbb{R} \), we can use the power method on \((A - sl)^{-1}\) to get the eigenvector \(v_j \) that corresponds to the \(\lambda_j \) closest to \(s \) (if such a \(\lambda_j \) is unique). To get \(\lambda_j \), just compute \(\langle v_j, Av_j \rangle \).

power iterations: \(x_{k+1} = (A - sl)^{-1}x_k \),

in MATLAB: \(x = (A - s * \text{eye}(n)) \backslash x \).

How do we find the smallest \(|\lambda_j| \)? Choose \(s = 0 \), and perform the power method on \(A^{-1} \)!
Recurrence relations

A recursive definition of a sequence of numbers a_0, a_1, a_2, \ldots:

$$a_n = a_{n-1} + 2; \quad a_0 = 5.$$

The sequence is

$$5, 7, 9, \ldots.$$
Recurrence relations

A recursive definition of a sequence of numbers a_0, a_1, a_2, \ldots:

$$a_n = a_{n-1} + 2; \quad a_0 = 5.$$

The sequence is

$$5, 7, 9, \ldots$$

But we can also find a formula for this sequence so we can quickly evaluate a_n for any n:

$$a_n = a_0 + 2n = 5 + 2n.$$
The Fibonacci sequence

0, 1, 1, 2, 3, 5, 8, 13,

Here

\[F_{n+1} = F_n + F_{n-1}; \quad F_0 = 0, F_1 = 1. \]

How can we find a formula for \(F_n \)?
The Fibonacci sequence

0, 1, 1, 2, 3, 5, 8, 13,

Here

\[F_{n+1} = F_n + F_{n-1}; \quad F_0 = 0, F_1 = 1. \]

How can we find a formula for \(F_n \)?

Rewrite relation as a matrix equation:

\[
\begin{bmatrix}
F_{n+1} \\
F_n
\end{bmatrix}
=
\begin{bmatrix}
1 & 1 \\
1 & 0
\end{bmatrix}
\begin{bmatrix}
F_n \\
F_{n-1}
\end{bmatrix},
\begin{bmatrix}
F_1 \\
F_0
\end{bmatrix}
=
\begin{bmatrix}
1 \\
0
\end{bmatrix}.
\]

Thus,

\[
\begin{bmatrix}
F_{n+1} \\
F_n
\end{bmatrix}
=
A^n
\begin{bmatrix}
F_1 \\
F_0
\end{bmatrix},
\begin{bmatrix}
F_{n+1} \\
F_n
\end{bmatrix}
=
A^n
\begin{bmatrix}
1 \\
0
\end{bmatrix}.
\]

Let \(\nu_n = \begin{bmatrix} F_{n+1} \\ F_n \end{bmatrix} \), and \(A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \). Then,

\[
\nu_n = A\nu_{n-1}, \quad \nu_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.
\]
The Fibonacci sequence

0, 1, 1, 2, 3, 5, 8, 13, . . .

Here

\[F_{n+1} = F_n + F_{n-1}; \quad F_0 = 0, \ F_1 = 1. \]

How can we find a formula for \(F_n \)?

Rewrite relation as a matrix equation:

\[F_{n+1} = F_n + F_{n-1} \]

\[F_n = F_n. \]

Thus,

\[
\begin{bmatrix} F_{n+1} \\ F_n \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} F_n \\ F_{n-1} \end{bmatrix}, \quad \begin{bmatrix} F_1 \\ F_0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.
\]

Let \(\mathbf{v}_n = \begin{bmatrix} F_{n+1} \\ F_n \end{bmatrix} \), and \(A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \). Then,

\[\mathbf{v}_n = A\mathbf{v}_{n-1}, \quad \mathbf{v}_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}. \]

Thus, \(\mathbf{v}_n = A\mathbf{v}_{n-1} = A^2\mathbf{v}_{n-2} = \cdots = A^n\mathbf{v}_0. \)
The Fibonacci sequence

0, 1, 1, 2, 3, 5, 8, 13, ….

Here

\[F_{n+1} = F_n + F_{n-1}; \quad F_0 = 0, F_1 = 1. \]

How can we find a formula for \(F_n \)?
Rewrite relation as a matrix equation:

\[
\begin{bmatrix}
F_{n+1} \\
F_n
\end{bmatrix} =
\begin{bmatrix}
1 & 1 \\
1 & 0
\end{bmatrix}
\begin{bmatrix}
F_n \\
F_{n-1}
\end{bmatrix}, \quad \begin{bmatrix}
F_1 \\
F_0
\end{bmatrix} =
\begin{bmatrix}
1 \\
0
\end{bmatrix}.
\]

Thus,

\[
\begin{bmatrix}
F_{n+1} \\
F_n
\end{bmatrix} = A^n \begin{bmatrix}
F_1 \\
F_0
\end{bmatrix} = A^n \begin{bmatrix}
1 \\
0
\end{bmatrix}.
\]

Let \(v_n = \begin{bmatrix} F_{n+1} \\ F_n \end{bmatrix} \), and \(A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \). Then,

\[v_n = Av_{n-1}, \quad v_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}. \]

Thus, \(v_n = A^n v_0 = A^n \begin{bmatrix} 1 \\ 0 \end{bmatrix} \).

\[\ldots F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right) \]
A more general example

\[x_{n+1} = 3x_n + x_{n-1} + 2x_{n-2}, \quad x_0 = a, x_1 = b, x_2 = c. \]

In matrix form:

\[
\begin{bmatrix}
 x_{n+1} \\
 x_n \\
 x_{n-1}
\end{bmatrix}
= \begin{bmatrix}
 3 & 1 & 2 \\
 1 & 0 & 0 \\
 0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
 x_n \\
 x_{n-1} \\
 x_{n-2}
\end{bmatrix}; \quad v_0 = \begin{bmatrix}
 c \\
 b \\
 a
\end{bmatrix}.
\]

\[v_{n-1} = Av_{n-2}, \quad v_0 = \begin{bmatrix}
 c \\
 b \\
 a
\end{bmatrix}. \]

Then,

\[v_n = A^n v_0. \]

Diagonalize \(A \) to get a formula for \(v_n \), and, thus, for \(x_n \).
Special facts about stochastic matrices.

Let P be an $n \times n$ stochastic matrix, i.e., $P_{ij} \geq 0$, and $\sum_{i=1}^{n} P_{ij} = 1$ for all j. Then,

1. If $v = [v_1, \ldots, v_n]^T$ is a state vector, i.e., $\sum v_i = 1$ and $0 \leq v_i \leq 1$, then Pv is also a state vector! (Proof: exercise).

2. $\lambda = 1$ is an eigenvalue of P. (Proof: on board.)

3. All other eigenvalues of P satisfy $|\lambda_j| \leq 1$.

4. If v is an eigenvector with eigenvalue 1, i.e., $Pv = v$, then, v has all nonnegative (or nonpositive) entries.

5. Eigenvectors corresponding to $|\lambda_j| < 1$ have entries that add up to 0.

6. When can we guarantee that $\lambda_1 = 1$ and $|\lambda_j| < 1$ for $j \neq 1$?

 If P or P^k for some $k \in \mathbb{N}$ has all positive entries, then $\lambda_1 = 1, |\lambda_j| < 1$ for all $j \neq 1$.