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Week 11

Limiting probabilities (examples)

Birth and death processes. We consider a birth and death process with birth rates \; and
death rates p;. We assume p; > 0 for every ¢ > 1. If 7 is a stationary distribution, we must have
7@ = 0, where
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This means that we need —A\gmg + p17m1 = 0 and, for all 4 > 1:
Aic1Ti1 + (=i — i)™ + pip1mier = 0.

From here, we try to express everything in term of my. Using the stationarity equation for ¢ = 0,

we find
Ao
T = —T7Q-.
M1

Next, using the stationarity equation for i = 1, we have

oo + proma = (A1 + pr),

SO pamy = A1 (since Agmp = p171), SO Ty = %7‘(0. Similarly, using the stationarity equation for

i =2, we get \ym1 + p3m3 = (A2 + p2)m2, SO 1373 = AgTy, SO T3 = %Wo
In general, we have
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Finally, we must have
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Hence, if ), r; = 400, then there is no stationary distribution. If the series ) .., 7; is finite, we
have found the stationary distribution:
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M/M/1 queue. We recall that in the M/M/1 queue, we have a unique server, customers arriving
at a certain rate A\, and the service times are i.i.d. Fxp(p). This is a particular case of birth and
death process with A, = A for n > 0 and p,, = p for n > 1.
Hence, we have r; = % If A < p, then



n
so the stationary distribution is m, = (%) <1 — %) This means that in the long run, the law of
the number of customers is a geometric variable with parameter 1 — % In particular, in the long

run, the average number of customers in the system is ﬁ

On the other hand, if A > p, then »".., r; = 400, so there is no stationary distribution, so there
are no limiting probability. More precisely, for all ¢, we have P(X (t) = i) — 0 when ¢t — +o0.

Linear growth model. This is another particular case of birth-death process, with A\, = n\+6
and pu, = nu. We get
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To know if the series ) ,.,r; converge or not, we use the ratio test: we compute the limit
lim; 1 o ”T—“ If this limit is < 1, the series converge. If the limit is > 1, the series diverge.

If the limit is 1, we don’t know for sure. We have
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In particular, once again, if A < u, the series converge and we have limiting probabilities. If A > pu,
the series diverge and the probabilities go to 0. Note that we have already computed E[X (¢)] and
seen that it has a finite limit in the first case, and goes to infinity in the second.

5) The embedded Markov chain

If we forget the lengths between jumps in a continuous-time Markov chain X, we get a discrete-time
Markov chain Y. Our goal in this paragraph is to understand the link between X and Y.

More precisely, the discrete chain Y obtained by ignoring the time spent between jumps is called
the embedded chain. Assume that X has a stationary distribution 7, and that the discrete-time
Markov chain Y has a stationary distribution o, that is,

g; = ijio'j for all 1.
J

What is the relation between ¢ and 7?7
Intuition: o; is the proportion of the jumps that end up on i. Once there, the time spent on i is
Exp(v;), so v% in average, so we expect m to be proportional to % Since we must have ) . m; =1,
we can guess
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Check: We now check the 7 that we guessed is a stationary distribution. First, by definition of

Z, we have
m, = — _— = — = .
- Y/ —~ v A

Second, to make sure 7 is stationary, we need to check

VT = qujﬂ'k for all j.
k#j



For this, we write
1 o 1 1
ZijTFk = kapkj x Z o, = EZpijk =79
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because ¢ is stationary for the embedded chain. On the other hand, we also have v;m; = v; x %Z—J =
J
077, which proves that 7 is stationary for X.

6) Reversibility
In this part, we assume that X is irreducible and has a stationary distribution 7. We also assume

that X (0) was distributed according to m, so that for all ¢, the law of X (¢) is .

The reversed process. We now fix some large ¢ and consider the reverse chain, that is X (s) =
X(t—s) for 0 < s <t. We first claim that, conditionally on X = 0, the time spent by X on state
i is Exp(v;), just like for X. Indeed, we have

P (Xstays on i at least until time s|X(0) = )
= P (X stays on ¢ from time ¢t — s to t| X (t) = 1)

P(X(s) =t—s)P(X stays on i from time t — s to t| X (s) =t — s)
P(X(t—s)=1)
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Therefore, the jump rate of X on each state is the same as for X. Moreover, the embedded chain
of X is the time-reversal of the embedded chain of X. By the results from the first chapter of the
course, the embedded chain of X has transitions
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In particular X is the same as X if and only if these are the same as pij, i.e. if o;p;; = ojpj; for all

1 and j. We recall that m; = %%, so 0; = Zwv;m;, so this is equivalent to

Zvimipij = ZViT;Dji,
which is equivalent to m;q;; = 7;q;;.
Definition 1 We say that X is time-reversible if it has a stationary distribution m and
Tidij = Tjqji
for all states i and j.

Like in the discrete-time case, the left-hand side can be interpreted as the frequency at which the
chain jumps from ¢ to j, and the right-hand side as the frequency at which the chain jumps from
7 to 1.



Birth and death processes.
Proposition 2 Any birth and death process with a stationary distribution is time-reversible.

Instead of a proof, we just give an intuitive argument why this is true: between two transitions
from ¢ to ¢ + 1, the process must jump from ¢ + 1 to ¢ exactly once. Hence, in the long run, it will
jump as many times from ¢ to i + 1 as from i + 1 to i. Moreover, if |i — j| > 1, it is impossible to
jump from ¢ to j or j to ¢, so both sides will be 0.

The M/M/s queue (i.e. with s servers). We recall the definition of the model: we have s
servers. New customers arrive at rate A. When n customers are present, they leave at rate nu if
n <s, and sp if n > s (i.e. if all servers are busy).

Corollary 3 For the M/M/s queue, if A < su, the departures of the clients form a Poisson process
with rate \.

Proof. Let X (t) be the number of customers present at time ¢. This is a birth and death process,
so by the last Proposition this is reversible. We know that by definition of the process, the times
where X increases by 1 form a Poisson process with rate A. When we reverse the process, these
times become the times where X (¢) decreases by 1, i.e. the times where a client leaves. Hence, the
times where a client leaves also form a Poisson process with rate A. O



