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Week 11

Limiting probabilities (examples)

Birth and death processes. We consider a birth and death process with birth rates λi and
death rates µi. We assume µi > 0 for every i ≥ 1. If π is a stationary distribution, we must have
πQ = 0, where

Q =


−λ0 λ0 0 0 . . .
µ1 −λ1 − µ1 λ1 0 . . .
0 µ2 −λ2 − µ2 λ2 . . .
...

...
...

...
. . .

 .

This means that we need −λ0π0 + µ1π1 = 0 and, for all i ≥ 1:

λi−1πi−1 + (−λi − µi)πi + µi+1πi+1 = 0.

From here, we try to express everything in term of π0. Using the stationarity equation for i = 0,
we find

π1 =
λ0
µ1
π0.

Next, using the stationarity equation for i = 1, we have

λ0π0 + µ2π2 = (λ1 + µ1)π1,

so µ2π2 = λ1π1 (since λ0π0 = µ1π1), so π2 = λ0λ1
µ1µ2

π0. Similarly, using the stationarity equation for

i = 2, we get λ1π1 + µ3π3 = (λ2 + µ2)π2, so µ3π3 = λ2π2, so π3 = λ0λ1λ2
µ1µ2µ3

π0.
In general, we have

πi = riπ0, where ri =
λ0λ1 . . . λi−1
µ1µ2 . . . µi

.

Finally, we must have

1 =
∑
i≥0

πi =

1 +
∑
i≥1

ri

π0.

Hence, if
∑

i≥1 ri = +∞, then there is no stationary distribution. If the series
∑

i≥1 ri is finite, we
have found the stationary distribution:

π0 =
1

1 +
∑

i≥1 ri
and πn =

rn
1 +

∑
i≥1 ri

for n ≥ 1.

M/M/1 queue. We recall that in the M/M/1 queue, we have a unique server, customers arriving
at a certain rate λ, and the service times are i.i.d. Exp(µ). This is a particular case of birth and
death process with λn = λ for n ≥ 0 and µn = µ for n ≥ 1.
Hence, we have ri = λi

µi
. If λ < µ, then

1 +
∑
i≥1

ri =
∑
i≥0

(
λ

µ

)i
=

1

1− λ/µ
,

1



so the stationary distribution is πn =
(
λ
µ

)n (
1− λ

µ

)
. This means that in the long run, the law of

the number of customers is a geometric variable with parameter 1 − λ
µ . In particular, in the long

run, the average number of customers in the system is 1
1−λ/µ .

On the other hand, if λ ≥ µ, then
∑

i≥1 ri = +∞, so there is no stationary distribution, so there
are no limiting probability. More precisely, for all i, we have P(X(t) = i)→ 0 when t→ +∞.

Linear growth model. This is another particular case of birth-death process, with λn = nλ+ θ
and µn = nµ. We get

ri =
θ(θ + λ)(θ + 2λ) . . . (θ + (i− 1)λ)

i!µi
.

To know if the series
∑

i≥1 ri converge or not, we use the ratio test : we compute the limit
limi→+∞

ri+1

ri
. If this limit is < 1, the series converge. If the limit is > 1, the series diverge.

If the limit is 1, we don’t know for sure. We have

ri+1

ri
=

λi
µi+1

=
θ + iλ

iµ
−−−−→
i→+∞

λ

µ
.

In particular, once again, if λ < µ, the series converge and we have limiting probabilities. If λ > µ,
the series diverge and the probabilities go to 0. Note that we have already computed E[X(t)] and
seen that it has a finite limit in the first case, and goes to infinity in the second.

5) The embedded Markov chain

If we forget the lengths between jumps in a continuous-time Markov chain X, we get a discrete-time
Markov chain Y . Our goal in this paragraph is to understand the link between X and Y .
More precisely, the discrete chain Y obtained by ignoring the time spent between jumps is called
the embedded chain. Assume that X has a stationary distribution π, and that the discrete-time
Markov chain Y has a stationary distribution σ, that is,

σi =
∑
j

pjiσj for all i.

What is the relation between σ and π?
Intuition: σi is the proportion of the jumps that end up on i. Once there, the time spent on i is
Exp(vi), so 1

vi
in average, so we expect π to be proportional to σi

vi
. Since we must have

∑
i πi = 1,

we can guess

πi =
σi/vi
Z

, where Z =
∑
j

σj/vj .

Check: We now check the π that we guessed is a stationary distribution. First, by definition of
Z, we have ∑

i

πi =
1

Z

∑
i

σi
vi

=
Z

Z
= 1.

Second, to make sure π is stationary, we need to check

vjπj =
∑
k 6=j

qkjπk for all j.
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For this, we write ∑
k 6=j

qkjπk =
∑
k 6=j

vkpkj ×
1

Z

σk
vk

=
1

Z

∑
k 6=j

pkjσk =
1

Z
σj

because σ is stationary for the embedded chain. On the other hand, we also have vjπj = vj× 1
Z
σj
vj

=
σj
Z , which proves that π is stationary for X.

6) Reversibility

In this part, we assume that X is irreducible and has a stationary distribution π. We also assume
that X(0) was distributed according to π, so that for all t, the law of X(t) is π.

The reversed process. We now fix some large t and consider the reverse chain, that is X(s) =
X(t− s) for 0 ≤ s ≤ t. We first claim that, conditionally on X = 0, the time spent by X on state
i is Exp(vi), just like for X. Indeed, we have

P
(
Xstays on i at least until time s|X(0) = i

)
= P (X stays on i from time t− s to t|X(t) = i)

=
P (X(s) = t− s)P (X stays on i from time t− s to t|X(s) = t− s)

P (X(t− s) = i)

=
πie
−vis

πi
= e−vis.

Therefore, the jump rate of X on each state is the same as for X. Moreover, the embedded chain
of X is the time-reversal of the embedded chain of X. By the results from the first chapter of the
course, the embedded chain of X has transitions

σj
σi
pji.

In particular X is the same as X if and only if these are the same as pij , i.e. if σipij = σjpji for all
i and j. We recall that πi = 1

Z
σi
vi

, so σi = Zviπi, so this is equivalent to

Zviπipij = Zvjπjpji,

which is equivalent to πiqij = πjqji.

Definition 1 We say that X is time-reversible if it has a stationary distribution π and

πiqij = πjqji

for all states i and j.

Like in the discrete-time case, the left-hand side can be interpreted as the frequency at which the
chain jumps from i to j, and the right-hand side as the frequency at which the chain jumps from
j to i.
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Birth and death processes.

Proposition 2 Any birth and death process with a stationary distribution is time-reversible.

Instead of a proof, we just give an intuitive argument why this is true: between two transitions
from i to i+ 1, the process must jump from i+ 1 to i exactly once. Hence, in the long run, it will
jump as many times from i to i+ 1 as from i+ 1 to i. Moreover, if |i− j| > 1, it is impossible to
jump from i to j or j to i, so both sides will be 0.

The M/M/s queue (i.e. with s servers). We recall the definition of the model: we have s
servers. New customers arrive at rate λ. When n customers are present, they leave at rate nµ if
n ≤ s, and sµ if n ≥ s (i.e. if all servers are busy).

Corollary 3 For the M/M/s queue, if λ < sµ, the departures of the clients form a Poisson process
with rate λ.

Proof. Let X(t) be the number of customers present at time t. This is a birth and death process,
so by the last Proposition this is reversible. We know that by definition of the process, the times
where X increases by 1 form a Poisson process with rate λ. When we reverse the process, these
times become the times where X(t) decreases by 1, i.e. the times where a client leaves. Hence, the
times where a client leaves also form a Poisson process with rate λ. �
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