Week 11

Limiting probabilities (examples)

Birth and death processes. We consider a birth and death process with birth rates λ_{i} and death rates μ_{i}. We assume $\mu_{i}>0$ for every $i \geq 1$. If π is a stationary distribution, we must have $\pi Q=0$, where

$$
Q=\left(\begin{array}{ccccc}
-\lambda_{0} & \lambda_{0} & 0 & 0 & \ldots \\
\mu_{1} & -\lambda_{1}-\mu_{1} & \lambda_{1} & 0 & \ldots \\
0 & \mu_{2} & -\lambda_{2}-\mu_{2} & \lambda_{2} & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right) .
$$

This means that we need $-\lambda_{0} \pi_{0}+\mu_{1} \pi_{1}=0$ and, for all $i \geq 1$:

$$
\lambda_{i-1} \pi_{i-1}+\left(-\lambda_{i}-\mu_{i}\right) \pi_{i}+\mu_{i+1} \pi_{i+1}=0
$$

From here, we try to express everything in term of π_{0}. Using the stationarity equation for $i=0$, we find

$$
\pi_{1}=\frac{\lambda_{0}}{\mu_{1}} \pi_{0}
$$

Next, using the stationarity equation for $i=1$, we have

$$
\lambda_{0} \pi_{0}+\mu_{2} \pi_{2}=\left(\lambda_{1}+\mu_{1}\right) \pi_{1}
$$

so $\mu_{2} \pi_{2}=\lambda_{1} \pi_{1}$ (since $\lambda_{0} \pi_{0}=\mu_{1} \pi_{1}$), so $\pi_{2}=\frac{\lambda_{0} \lambda_{1}}{\mu_{1} \mu_{2}} \pi_{0}$. Similarly, using the stationarity equation for $i=2$, we get $\lambda_{1} \pi_{1}+\mu_{3} \pi_{3}=\left(\lambda_{2}+\mu_{2}\right) \pi_{2}$, so $\mu_{3} \pi_{3}=\lambda_{2} \pi_{2}$, so $\pi_{3}=\frac{\lambda_{0} \lambda_{1} \lambda_{2}}{\mu_{1} \mu_{2} \mu_{3}} \pi_{0}$.
In general, we have

$$
\pi_{i}=r_{i} \pi_{0}, \quad \text { where } r_{i}=\frac{\lambda_{0} \lambda_{1} \ldots \lambda_{i-1}}{\mu_{1} \mu_{2} \ldots \mu_{i}} .
$$

Finally, we must have

$$
1=\sum_{i \geq 0} \pi_{i}=\left(1+\sum_{i \geq 1} r_{i}\right) \pi_{0} .
$$

Hence, if $\sum_{i \geq 1} r_{i}=+\infty$, then there is no stationary distribution. If the series $\sum_{i \geq 1} r_{i}$ is finite, we have found the stationary distribution:

$$
\pi_{0}=\frac{1}{1+\sum_{i \geq 1} r_{i}} \text { and } \pi_{n}=\frac{r_{n}}{1+\sum_{i \geq 1} r_{i}} \text { for } n \geq 1
$$

M/M/1 queue. We recall that in the $M / M / 1$ queue, we have a unique server, customers arriving at a certain rate λ, and the service times are i.i.d. $\operatorname{Exp}(\mu)$. This is a particular case of birth and death process with $\lambda_{n}=\lambda$ for $n \geq 0$ and $\mu_{n}=\mu$ for $n \geq 1$.
Hence, we have $r_{i}=\frac{\lambda^{i}}{\mu^{i}}$. If $\lambda<\mu$, then

$$
1+\sum_{i \geq 1} r_{i}=\sum_{i \geq 0}\left(\frac{\lambda}{\mu}\right)^{i}=\frac{1}{1-\lambda / \mu}
$$

so the stationary distribution is $\pi_{n}=\left(\frac{\lambda}{\mu}\right)^{n}\left(1-\frac{\lambda}{\mu}\right)$. This means that in the long run, the law of the number of customers is a geometric variable with parameter $1-\frac{\lambda}{\mu}$. In particular, in the long run, the average number of customers in the system is $\frac{1}{1-\lambda / \mu}$.
On the other hand, if $\lambda \geq \mu$, then $\sum_{i \geq 1} r_{i}=+\infty$, so there is no stationary distribution, so there are no limiting probability. More precisely, for all i, we have $\mathbb{P}(X(t)=i) \rightarrow 0$ when $t \rightarrow+\infty$.

Linear growth model. This is another particular case of birth-death process, with $\lambda_{n}=n \lambda+\theta$ and $\mu_{n}=n \mu$. We get

$$
r_{i}=\frac{\theta(\theta+\lambda)(\theta+2 \lambda) \ldots(\theta+(i-1) \lambda)}{i!\mu^{i}} .
$$

To know if the series $\sum_{i \geq 1} r_{i}$ converge or not, we use the ratio test: we compute the limit $\lim _{i \rightarrow+\infty} \frac{r_{i+1}}{r_{i}}$. If this limit is <1, the series converge. If the limit is >1, the series diverge. If the limit is 1 , we don't know for sure. We have

$$
\frac{r_{i+1}}{r_{i}}=\frac{\lambda_{i}}{\mu_{i+1}}=\frac{\theta+i \lambda}{i \mu} \underset{i \rightarrow+\infty}{ } \frac{\lambda}{\mu} .
$$

In particular, once again, if $\lambda<\mu$, the series converge and we have limiting probabilities. If $\lambda>\mu$, the series diverge and the probabilities go to 0 . Note that we have already computed $\mathbb{E}[X(t)]$ and seen that it has a finite limit in the first case, and goes to infinity in the second.

5) The embedded Markov chain

If we forget the lengths between jumps in a continuous-time Markov chain X, we get a discrete-time Markov chain Y. Our goal in this paragraph is to understand the link between X and Y.
More precisely, the discrete chain Y obtained by ignoring the time spent between jumps is called the embedded chain. Assume that X has a stationary distribution π, and that the discrete-time Markov chain Y has a stationary distribution σ, that is,

$$
\sigma_{i}=\sum_{j} p_{j i} \sigma_{j} \text { for all } i
$$

What is the relation between σ and π ?
Intuition: σ_{i} is the proportion of the jumps that end up on i. Once there, the time spent on i is $\operatorname{Exp}\left(v_{i}\right)$, so $\frac{1}{v_{i}}$ in average, so we expect π to be proportional to $\frac{\sigma_{i}}{v_{i}}$. Since we must have $\sum_{i} \pi_{i}=1$, we can guess

$$
\pi_{i}=\frac{\sigma_{i} / v_{i}}{Z}, \quad \text { where } Z=\sum_{j} \sigma_{j} / v_{j}
$$

Check: We now check the π that we guessed is a stationary distribution. First, by definition of Z, we have

$$
\sum_{i} \pi_{i}=\frac{1}{Z} \sum_{i} \frac{\sigma_{i}}{v_{i}}=\frac{Z}{Z}=1
$$

Second, to make sure π is stationary, we need to check

$$
v_{j} \pi_{j}=\sum_{k \neq j} q_{k j} \pi_{k} \quad \text { for all } j .
$$

For this, we write

$$
\sum_{k \neq j} q_{k j} \pi_{k}=\sum_{k \neq j} v_{k} p_{k j} \times \frac{1}{Z} \frac{\sigma_{k}}{v_{k}}=\frac{1}{Z} \sum_{k \neq j} p_{k j} \sigma_{k}=\frac{1}{Z} \sigma_{j}
$$

because σ is stationary for the embedded chain. On the other hand, we also have $v_{j} \pi_{j}=v_{j} \times \frac{1}{Z} \frac{\sigma_{j}}{v_{j}}=$ $\frac{\sigma_{j}}{Z}$, which proves that π is stationary for X.

6) Reversibility

In this part, we assume that X is irreducible and has a stationary distribution π. We also assume that $X(0)$ was distributed according to π, so that for all t, the law of $X(t)$ is π.

The reversed process. We now fix some large t and consider the reverse chain, that is $\bar{X}(s)=$ $X(t-s)$ for $0 \leq s \leq t$. We first claim that, conditionally on $\bar{X}=0$, the time spent by \bar{X} on state i is $\operatorname{Exp}\left(v_{i}\right)$, just like for X. Indeed, we have

$$
\begin{aligned}
& \mathbb{P}(\bar{X} \text { stays on } i \text { at least until time } s \mid \bar{X}(0)=i) \\
= & \mathbb{P}(X \text { stays on } i \text { from time } t-s \text { to } t \mid X(t)=i) \\
= & \frac{\mathbb{P}(X(s)=t-s) \mathbb{P}(X \text { stays on } i \text { from time } t-s \text { to } t \mid X(s)=t-s)}{\mathbb{P}(X(t-s)=i)} \\
= & \frac{\pi_{i} e^{-v_{i} s}}{\pi_{i}}=e^{-v_{i} s} .
\end{aligned}
$$

Therefore, the jump rate of \bar{X} on each state is the same as for X. Moreover, the embedded chain of \bar{X} is the time-reversal of the embedded chain of X. By the results from the first chapter of the course, the embedded chain of \bar{X} has transitions

$$
\frac{\sigma_{j}}{\sigma_{i}} p_{j i} .
$$

In particular \bar{X} is the same as X if and only if these are the same as $p_{i j}$, i.e. if $\sigma_{i} p_{i j}=\sigma_{j} p_{j i}$ for all i and j. We recall that $\pi_{i}=\frac{1}{Z} \frac{\sigma_{i}}{v_{i}}$, so $\sigma_{i}=Z v_{i} \pi_{i}$, so this is equivalent to

$$
Z v_{i} \pi_{i} p_{i j}=Z v_{j} \pi_{j} p_{j i}
$$

which is equivalent to $\pi_{i} q_{i j}=\pi_{j} q_{j i}$.
Definition 1 We say that X is time-reversible if it has a stationary distribution π and

$$
\pi_{i} q_{i j}=\pi_{j} q_{j i}
$$

for all states i and j.
Like in the discrete-time case, the left-hand side can be interpreted as the frequency at which the chain jumps from i to j, and the right-hand side as the frequency at which the chain jumps from j to i.

Birth and death processes.

Proposition 2 Any birth and death process with a stationary distribution is time-reversible.
Instead of a proof, we just give an intuitive argument why this is true: between two transitions from i to $i+1$, the process must jump from $i+1$ to i exactly once. Hence, in the long run, it will jump as many times from i to $i+1$ as from $i+1$ to i. Moreover, if $|i-j|>1$, it is impossible to jump from i to j or j to i, so both sides will be 0 .

The $\mathrm{M} / \mathrm{M} / \mathrm{s}$ queue (i.e. with s servers). We recall the definition of the model: we have s servers. New customers arrive at rate λ. When n customers are present, they leave at rate $n \mu$ if $n \leq s$, and $s \mu$ if $n \geq s$ (i.e. if all servers are busy).

Corollary 3 For the $M / M / s$ queue, if $\lambda<s \mu$, the departures of the clients form a Poisson process with rate λ.

Proof. Let $X(t)$ be the number of customers present at time t. This is a birth and death process, so by the last Proposition this is reversible. We know that by definition of the process, the times where X increases by 1 form a Poisson process with rate λ. When we reverse the process, these times become the times where $X(t)$ decreases by 1, i.e. the times where a client leaves. Hence, the times where a client leaves also form a Poisson process with rate λ.

