RECURRENCE RELATIONS

ELINA ROBEVA

1. Homogeneous Linear Recurrence Relations

A homogeneous linear recurrence relation has the form

$$
f_{n+1}=a_{0} f_{n}+a_{1} f_{n-1}+\cdots+a_{k} f_{n-k},
$$

where a_{0}, \ldots, a_{k} are constants. The aim is to find a closed-form formula for f_{n}.
Problem 1. Consider the relation $a_{n+1}=2 a_{n}, a_{0}=1$. What is a_{n} ?

Problem 2 (The Fibonacci Sequence). The Fibonacci sequence is given by

$$
f_{0}=0, \quad f_{1}=1, \quad f_{n+1}=f_{n}+f_{n-1}, \forall n \geq 1
$$

What is f_{10} ? How about f_{2020} ? Find a closed-form formula for f_{n}.

Problem 3. Let $a_{n+1}=5 a_{n}-6 a_{n-1}, a_{0}=1, a_{1}=2$. Find a closed-form formula for a_{n}.

Problem 4. Let $a_{n+1}=4 a_{n}-4 a_{n-1}, a_{0}=1, a_{1}=2$. Find a closed-form formula for a_{n}.

Problem 5. Let $a_{n+1}=2 a_{n}-2 a_{n-1}, a_{0}=1, a_{1}=2$. Find a closed-form formula for a_{n}.

Problem 6. Let $a_{n+1}=4 a_{n}-a_{n-1}-6 a_{n-2}, a_{0}=1, a_{1}=2, a_{2}=3$. Find a closed-form formula for a_{n}.

Problem 7 (The Gambler's Ruin Problem). Smith has $\$ n$ at the beginning of the day, and starts playing the following gambling game. At each step he tosses a coin, which comes up Heads with probability $\frac{1}{2}$, and Tails with probability $\frac{1}{2}$. If the coin comes up Heads, Smith gains $\$ 1$, and if it comes up Tails, he loses $\$ 1$. The game ends if either Smith has a total of $\$ N$, where $N>n$, or if he has no money left. Find the probability q_{n} of Smith winning (i.e. having $\$ N$) if he starts the day with $\$ n$.

Date: January 23, 2020.

2. Non-homogeneous Linear Recurrence Relations

A non-homogeneous linear recurrence relation has the form

$$
f_{n+1}=a_{0} f_{n}+a_{1} f_{n-1}+\cdots+a_{k} f_{n-k}+g(n)
$$

where a_{0}, \ldots, a_{k} are constants, and $g(n)$ is a function that depends on n. The aim, again, is to find a closed-form formula for the n-th term f_{n}.

The general algorithm for solving such a relation is to first find a particular solution, x_{n}. Then, the sequence $\left(f_{n}-x_{n}\right)$ satisfies the homogeneous recurrence relation:

$$
\left(f_{n+1}-x_{n+1}\right)=a_{0}\left(f_{n}-x_{n}\right)+a_{1}\left(f_{n-1}-x_{n-1}\right)+\cdots+a_{k}\left(f_{n-k}-x_{n-k}\right)
$$

and, therefore, we can solve it using the tools we learned above.
Problem 8. Solve the recurrence relation

$$
a_{n+1}=3 a_{n}+1, \quad a_{0}=0
$$

Problem 9. Find all solutions to the recurrence relation

$$
a_{n+1}=3 a_{n}+4 a_{n-1}+3 .
$$

Problem 10 (The Towers of Hanoi). Suppose we have 3 pegs, and there are n disks of increasing size on one of the pegs. The goal is to move all n disks to one of the other 2 pegs. We are only allowed to move one disk at a time, and cannot put a larger disk on top of a smaller one. Let H_{n} be the number of moves it takes to move the n disks. Show that H_{n} satisfies the recurrence relation

$$
H_{n}=2 H_{n-1}+1, \quad H_{0}=0
$$

and then solve this relation.
Problem 11 (The Binary Search Algorithm). Suppose we are given n ordered real numbers $a_{1}<a_{2}<\cdots<a_{n}$, and another real number b. How many times do we have to check whether $b_{j}<a_{j}$ for some j in order to find the unique $i \in\{0,1, \ldots, n\}$ so that $a_{i} \leq b<a_{i+1}$? It might be easier to assume that n is a power of 2.

Problem 12. Find all solutions to the recurrence relation

$$
a_{n+1}=2 a_{n}+n, \quad a_{0}=0 .
$$

Now, try solving all of the problems above using the method of generating functions!

1. $\quad a_{n+1}=2 a_{n}, \quad a_{0}=1$.
$1,2,4,8,16, \ldots$

$$
a_{n}=2^{n}
$$

In general, if

$$
a_{n+1}=c \cdot a_{n}
$$

then

$$
\begin{aligned}
a_{n} & =c \cdot a_{n-1} \\
& =c \cdot\left(c \cdot a_{n-2}\right)=c^{2} a_{n-2} \\
& =c^{3} \cdot a_{n-3} \\
\vdots & =c^{n} \cdot a_{0}
\end{aligned}
$$

(1)
2.

$$
\begin{align*}
& f_{0}=0, f_{1}=1 \\
& f_{n+1}=f_{n}+f_{n-1} \tag{*}\\
& 0,1,1,2,3,5,8,13,21, \ldots
\end{align*}
$$

Characteristic equation: plug in x^{n} for for in the recurrence:

$$
\begin{aligned}
& x^{n+1}=x^{n}+x^{n-1} \\
& x^{n+1}-x^{n}-x^{n-1}=0 \\
& x^{n+1}\left(x^{2}-x-1\right)=0 \\
& x^{2}-x-1=0 \\
& x_{1,2}=\frac{1 \pm \sqrt{5}}{2}
\end{aligned}
$$

$$
f_{n}=x_{1}^{n} \begin{aligned}
& \text { are } \\
& \text { solution } \\
& \text { to }
\end{aligned}(H)
$$

Then,

$$
f_{n}=x_{2}^{n}
$$

$$
f_{n}=\alpha \cdot x_{1}^{n}+\beta \cdot x_{2}^{n}
$$

for some $\alpha, \beta \in \mathbb{R}$.

Plug in $f_{0}=0$ and $f_{1}=1$:

$$
\begin{aligned}
& \left\{\begin{array}{l}
f_{0}=\alpha+\beta=0 \\
f_{1}=\alpha x_{1}+\beta x_{2}=1
\end{array}\right. \\
& \left\{\begin{array}{l}
\beta=1-\alpha \\
\alpha x_{1}+(1-\alpha) x_{2}=1
\end{array}\right. \\
& \left\{\begin{array}{l}
\beta=1-\alpha \\
\alpha\left(x_{1}-x_{2}\right)=1-x_{2}
\end{array}\right. \\
& \{\begin{array}{l}
\beta=1-\alpha \\
\left.\alpha \sqrt{5}_{5}^{\left(\frac{1+\sqrt{5}}{2}-\frac{1-\sqrt{5}}{2}\right.}\right)
\end{array} \underbrace{1-\frac{1-\sqrt{5}}{2}}_{\sqrt{5}} \underbrace{1-\frac{1}{2}}_{\frac{1+\sqrt{5}}{2}} \\
& \alpha=\frac{1+\sqrt{5}}{2 \sqrt{5}}=\frac{1}{\sqrt{5}} x_{1} \\
& \beta=1-\frac{1+\sqrt{5}}{2 \sqrt{5}}=\frac{\sqrt{5}-1}{2 \sqrt{5}}=-\frac{x_{2}}{\sqrt{5}} \\
& =\frac{x_{1}^{n+1}}{\sqrt{5}}-\frac{x_{2}^{n+1}}{\sqrt{5}}, \\
& \text { where } x_{1}=\frac{1+\sqrt{5}}{2}, x_{2}=\frac{1-\sqrt{5}}{2} \\
& f_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n+1}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n+1} \\
& f_{n+1}=f_{n}+f_{n-1} \\
& \operatorname{Set} V_{n}=\left[\begin{array}{c}
t_{n} \\
t_{n-1}
\end{array}\right] \text {. Then, } \\
& v_{n+1}=\left[\begin{array}{c}
f_{n+1} \\
f_{n}
\end{array}\right]=\left[\begin{array}{c}
f_{n}+f_{n-1} \\
f_{n}
\end{array}\right] \\
& v_{n+1}=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
f_{n} \\
f_{n-1}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right] v_{n}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow v_{n+1}=\underbrace{\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right] v_{n}}_{A} \\
& v_{n}=A^{n-m} v_{0} \\
& A=S\left[\begin{array}{ll}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right] S^{-1} \\
& \text { diagonalization } \\
& A^{n-1}=S\left[\begin{array}{ll}
\lambda_{1}^{n-1} & \lambda_{2}^{n-1}
\end{array}\right] S^{1 /-1}
\end{aligned}
$$

3.

$$
\begin{aligned}
& a_{n+1}=5 a_{n}-6 a_{n-1} \\
& a_{0}=1, a_{1}=2 \\
& a_{n}=x^{n} \\
& x^{n+1}=5 x^{n}-6 x^{n-1} \\
& x^{n+1}\left(x^{2}-5 x+6\right)=0 \\
& (x-2)(x-3)=0 \\
& x_{1}=2, \quad x_{2}=3 \\
& \Rightarrow a_{n}=\alpha \cdot 2^{n}+\beta \cdot 3^{n} \\
& a_{0}=1=\alpha+\beta \\
& a_{1}=2=2 \alpha+3 \beta \quad \beta=1 \\
& \Rightarrow a_{n}=2^{n}
\end{aligned}
$$

4.

$$
\begin{aligned}
& a_{n+1}=4 a_{n}-4 a_{n-1} \\
& a_{0}=1, \quad a_{1}=2
\end{aligned}
$$

Characteristic equation:

$$
\begin{aligned}
& x^{n+1}-4 x^{n}+4 x^{4-1}=0 \\
& x^{2}-4 x+4=0 \\
& (x-2)^{2}=0
\end{aligned}
$$

$$
x_{1}=x_{2}=2 \text { repeated root! }
$$

Then, $Q_{n}=\alpha \cdot x_{1}^{n}+\beta \cdot n \cdot x_{1}^{n}$

$$
=\alpha \cdot 2^{n}+\beta \cdot n \cdot 2^{n}
$$

Clock: 2^{n} and $n \cdot 2^{n}$ are both solutions to the recurrence relation.
Plug in a_{0} and a_{1} :

$$
\left\{\begin{array}{l}
\left\{\begin{array}{l}
a_{0}=1=\alpha \\
a_{1}=2=\alpha \cdot 2+\beta \cdot 1 \cdot 2^{1}
\end{array}\right. \\
\Rightarrow \alpha=1, \beta=0 ; \Rightarrow a_{n}=2^{n}
\end{array}\right.
$$

$$
\begin{aligned}
& a_{n+1}=4 a_{n}-4 a_{n-1} \\
& a_{0}=1, \quad a_{1}=3
\end{aligned}, \begin{aligned}
& a_{n}=\alpha \cdot 2^{n}+\beta \cdot n \cdot 2^{n} \\
& \left\{\begin{array}{l}
a_{0}=\alpha=1 \\
a_{1}=\alpha \cdot 2+\beta \cdot 1 \cdot 2=3 \\
\left\{\begin{array} { l }
{ \alpha = 1 } \\
{ 2 \beta = 1 }
\end{array} \quad \left\{\begin{array}{l}
\alpha=1 \\
\beta=\frac{1}{2}
\end{array}\right.\right. \\
\Rightarrow a_{n}=2^{n}+\frac{1}{2} \cdot n \cdot 2^{n} .
\end{array}\right.
\end{aligned}
$$

5.

$$
\begin{aligned}
a_{n+1} & =2 a_{n}-2 a_{n-1} \\
a_{0} & =1, a_{1}=2
\end{aligned}
$$

(9)

Set $a_{n}=x^{n}$ and plug in:

$$
\begin{gathered}
x^{n+1}=2 x^{n}-2 x^{n-1} \\
x^{n-1}(\underbrace{\left.x^{2}-2 x+2\right)}=b^{2}-4 a c<0 \\
x_{1,2}=1 \pm \underbrace{\sqrt{-1}}_{i} \quad \begin{array}{r}
\text { and real } \\
\text { solutions }
\end{array}
\end{gathered}
$$

$i=\sqrt{-1}$ has the probertesy:

$$
i^{2}=-1
$$

Complex numbers (1)

$$
\begin{gathered}
\mathbb{C}=\{a+i b: a, b \in \mathbb{R}\} \\
x_{1}=\frac{1+i, \quad x_{2}=\frac{1-i}{ \pm i \theta}}{x_{1,2}=\sqrt{ } e^{ \pm i}}
\end{gathered}
$$

* Euler's formula:

$$
e^{i \theta}=\cos \theta+i \sin \theta
$$

Every complex number can be written as

$$
\begin{aligned}
& \mathbb{R}^{d^{r \cdot e^{i \theta}}=r(\cos \theta+i \sin \theta)} \\
& x_{1}=1+i=\sqrt{2}\left(\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}\right) \\
& =\sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)=\sqrt{2} e^{i \frac{\pi}{4}} \\
& x_{2}=1-i=\sqrt{2}\left(\cos \frac{\pi}{4}-i \sin \frac{\pi}{4}\right) \\
& =\sqrt{2}\left(\cos \left(-\frac{\pi}{4}\right)+i \sin \left(-\frac{\pi}{4}\right)\right) \\
& =\sqrt{2} e^{i\left(-\frac{\pi}{4}\right)} \\
& a_{n}=\alpha x_{1}{ }^{n}+\beta x_{2}{ }^{n} \\
& x_{1}^{n}=\left(\sqrt{2} e^{i \frac{\pi}{4}}\right)^{n}=\sqrt{2}^{n} e^{i n \frac{\pi}{4}}
\end{aligned}
$$

$$
x_{\text {milarley }}{ }^{n}=\sqrt{2}^{n}\left(\cos \left(n \frac{\pi}{4}\right)+i \sin \left(n \frac{\pi}{4}\right)\right)^{(i}
$$

Similarly,

$$
\begin{aligned}
& x_{2}^{n}=\underbrace{\sqrt{2}^{n}\left(\cos \left(n \frac{\pi}{4}\right)-i \sin \left(n \frac{\pi}{4}\right)\right)} \\
& a_{n}=\alpha(*)+\beta(* *)
\end{aligned}
$$

$$
a_{n}=\frac{x_{1}^{n}+x_{2}^{n}}{2} \text { is a solution }
$$

$$
a_{n}=\frac{x_{1}^{n}-x_{2}^{n}}{2 i} \text { is a solution }
$$

$$
\frac{x_{1}^{n}+x_{2}^{n}}{2}=\sqrt{2}^{n} \cos \left(n \frac{\pi}{4}\right)
$$

$$
\frac{x_{1}^{n}-x_{2}^{n}}{2 i}=\sqrt{2}^{n} \sin \left(n \frac{\pi}{4}\right)
$$

General sol:

$$
\begin{aligned}
& a_{n}=\gamma \cdot \sqrt{2}^{n} \cos \left(n \frac{\pi}{4}\right)+\delta \sqrt{2}^{n} \sin \left(n \frac{\pi}{4}\right) \\
& a_{n}=\gamma \cdot r^{n} \cos (n \theta)+\delta r^{n} \sin (n \theta)
\end{aligned}
$$

Plug in

$$
\begin{aligned}
& \left\lvert\, \begin{array}{l}
a_{0}=1=\gamma . \\
a_{1}=2=\gamma \cdot \sqrt{2} \cdot \frac{\cos \frac{\pi}{4}}{\frac{1}{\sqrt{2}}}+\delta \sqrt{2} \sin \frac{\pi}{4} \\
\\
\gamma=1 \\
2=\gamma+\delta \Rightarrow \delta=1 \\
a_{n}=\sqrt{2}^{n} \cos \left(n \frac{\pi}{4}\right)+\sqrt{2}^{n} \sin \left(n \frac{\pi}{4}\right)
\end{array}\right.
\end{aligned}
$$

$$
\left.\begin{array}{l}
\left\lvert\, \begin{array}{ll}
\alpha+\beta+\gamma=1 \\
-\alpha+2 \beta+3 \gamma=2 \\
\alpha+4 \beta+9 \gamma=3
\end{array}\right. \\
\begin{array}{ll}
3 \beta+4 \gamma=3 & 4 \gamma=-1 \\
6 \beta+12 \gamma=5 & \gamma=-\frac{1}{4} \\
\alpha=1-\beta-\gamma & 3 \beta-1=3 \\
\beta=\frac{4}{3}
\end{array} \\
\begin{array}{l}
x_{n}=-\frac{1}{12}(-1)^{n}+\frac{4}{3} \cdot 2^{n}-\frac{1}{4} 3^{n}
\end{array}=1-\frac{4}{3}+\frac{1}{4} \\
=-\frac{1}{3}+\frac{1}{4}=-\frac{1}{12}
\end{array}\right]
$$

6.

$$
\begin{gathered}
a_{n+1}=4 a_{n}-a_{n-1}-6 a_{n-2} \\
a_{0}=1, a_{1}=2, a_{2}=3 \\
a_{n}=x^{n} \\
x^{n+1}=4 x^{n}-x^{n-1}-6 x^{n-2} \\
x^{n-2}\left(x^{3}-4 x^{2}+x+6\right)=0
\end{gathered}
$$

characteristic equation.

$$
\begin{array}{cc}
(x+1)(x-2)(x-3)=0 \\
x_{1}=-1 & (-1)^{n} \\
x_{2}=2 & 2^{n} \\
x_{3}=3 & 3^{n} \\
a_{n}=\alpha(-1)^{n}+\beta \cdot 2^{n}+\gamma 3^{n} \\
a_{0}=1=\alpha+\beta+\gamma \\
a_{1}=2=-\alpha+2 \beta+3 \gamma \\
a_{2}=3=\alpha+4 \beta+9 \gamma
\end{array}
$$

7. The Gambler's Ruin Problem

$$
q_{n}=\text { probability Smith wins the }
$$ game if he starts with \$n.

$$
\begin{gathered}
q_{0}=0, \quad q_{N}=1 . \quad p \neq \frac{1}{2} \\
1 \leqslant n \leq N \\
q_{n}=\frac{1}{2} q_{n-1}+\frac{1}{2} q_{n+1} \\
x^{n}=\frac{1}{2} x^{n-1}+\frac{1}{2} x^{n+1} \\
\frac{1}{2} x^{n-1}\left(\frac{\left.x^{2}-2 x+1\right)}{(x-1)^{2}=0}=0\right. \\
x_{1}=x_{2}=1 \\
q_{n}=\alpha \cdot 1^{n}+\beta \cdot n \cdot 1^{n} \\
\Rightarrow q_{n}=\alpha+n \beta \\
q_{0}=0=\alpha \quad \alpha=0 \\
q_{N}=1=\alpha+N \beta \quad \beta=\frac{1}{N} \\
\Rightarrow q_{n}=\frac{n}{N}
\end{gathered}
$$

8. $a_{n+1}=3 a_{n}+1$

$$
a_{0}=0
$$

Guess $a_{n}=c$

$$
\begin{array}{r}
c=3 c+1 \\
c=-\frac{1}{2}
\end{array}
$$

Set $b_{n}=a_{n}-\left(-\frac{1}{2}\right)=a_{n}+\frac{1}{2}$

$$
\begin{aligned}
b_{n+1}=a_{n+1}+\frac{1}{2} & =3 a_{n}+1+\frac{1}{2} \\
& =3\left(a_{n}+\frac{1}{2}\right) \\
& =3 b_{n}
\end{aligned}
$$

$$
\begin{array}{r}
\Rightarrow b_{n+1}=3 b_{n}, b_{0}=a_{0}+\frac{1}{2}=\frac{1}{2} \\
b_{n}=\frac{1}{2} \cdot 3^{n} \Rightarrow a_{n}=\frac{1}{2} 3^{n}-\frac{1}{2} .
\end{array}
$$

9. $a_{n+1}=3 a_{n}+4 a_{n-1}+3$
(17)
set $a_{n}=c$

$$
\begin{gathered}
c=3 c+4 c+3 \\
c=-\frac{1}{2}
\end{gathered}
$$

Set $b_{n}=a_{n}-c=a_{n}+\frac{1}{2}$
Then:

$$
b_{n+1}=3 b_{n}+4 b_{n-1}
$$

Characteristic equation:

$$
\begin{gathered}
x^{n-1}\left(x^{2}-3 x-4\right)=0 \\
x_{1}=4, x_{2}=-1 \\
b_{n}=\alpha \cdot 4^{n}+\beta \cdot(-1)^{n} \\
\Rightarrow a_{n}=b_{n}-\frac{1}{2}=\alpha \cdot 4^{n}+\beta \cdot(-1)^{n}-\frac{1}{2}
\end{gathered}
$$

12.

$$
a_{n+1}=2 a_{n}+n, \quad a_{0}=0
$$

$$
\begin{aligned}
& a_{n+1}+n+1=2 a_{n}+n+n+1 \\
& (\underbrace{a_{n+1}}_{b_{n+1}+n+1}=2 \underbrace{\left(a_{n}+n\right)}_{b_{n}}+1 \\
& b_{n+1}=2 b_{n}+1
\end{aligned}
$$

two solve via Problem 10.
Method of generating functions

$$
a_{n+1}=2 a_{n}+n, \quad a_{0}=0
$$

Define $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$
Then, find $f(x)$.

$$
\begin{align*}
& f(x)=\sum_{n=0} a_{n} x^{n}=a_{0}+a_{1} x \tag{ig}\\
& \frac{f(x)-a_{0}}{x}=\sum_{n=0}^{\infty} a_{n+1} x^{n} \\
& =\sum_{n=0}^{\infty}\left(2 a_{n}+n\right) x^{n} \\
& S=\sum_{n=0}^{\infty} n x^{n}=x \sum_{n=n}^{\infty} n x^{n-1} \tag{20}\\
& =x\left(\sum_{n=0}^{\infty} x^{n}\right)^{1} \\
& =x\left(\frac{1}{1-x}\right)^{\prime}=\frac{x}{(1-x)^{2}} . \\
& =2 \underbrace{\sum_{n=0}^{\infty} a_{n} x^{n}}_{f(x)}+\sum_{n=0}^{\infty} n x^{n} \\
& \frac{f(x)-a_{0}}{x}=2 f(x)+\sum_{n=0}^{\infty} n x^{n} \\
& S-x S=\sum_{n=0}^{\infty} n x^{n}-\sum_{n=1}^{\infty}(n-1) x^{n} \\
& =\sum_{n=1}^{\infty} x^{n}=\frac{1}{1-x}-1 \\
& S=\frac{x}{(1-x)^{2}} \quad=\frac{x}{1-x} \\
& \rightarrow \frac{f(x)-a_{0}=0}{x}=2 f(x)+\frac{x}{(1-x)^{2}} \\
& (1-2 x) f(x)=\frac{x^{2}}{(1-x)^{2}} \\
& \Rightarrow f(x)=x^{2} \frac{1}{(1-2 x)(1-x)^{2}} \\
& \vdots \quad \frac{A}{1-2 x}+\frac{B}{1-x}+\frac{C}{(1-x)^{2}} \\
& f(x)=\left(-\frac{1}{(1-x)^{2}}+\frac{2}{1-2 x}\right) \\
& =x^{\prime}\left[\begin{array}{c}
\left.-\left(1+x+x^{2}+\cdots\right)^{3}+2\left(1+2 x+(2 x)^{2}+-1\right)\right) \\
\left(1+x+x^{2}+\cdots\right) \\
2^{n} x^{n}
\end{array}\right.
\end{align*}
$$

$$
\begin{aligned}
f(x) & =\left(-\sum_{n=0}^{\infty}(n+1) x^{n}+2 \sum_{n=0}^{\infty} 2^{(21)} 2^{n}\right) \\
& =\sum_{n=0}^{\infty}\left(2^{n+1}-n-1\right) x^{n} \\
& \Rightarrow a_{n}=2^{n+1}-n-1 .
\end{aligned}
$$

10.

$$
\begin{aligned}
& H_{n}=2 F_{n-1}+1, \quad H_{0}=0 \\
& f(x)=\sum_{n=0}^{\infty} H_{n} x^{n} \\
& \frac{f(x)-H_{0}^{\prime 0}}{x}=\sum_{n=0}^{\infty} H_{n+1} x^{n} \\
&=\sum_{n=0}^{\infty}\left(2 H_{n}+1\right) x^{n} \\
&= 2\left(\sum_{n=0}^{\infty} H_{n} x^{n}\right)+\sum_{n=0}^{\infty} x^{n} \\
&= 2 f(x)+\frac{1}{1-x}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{f(x)}{x}=2 f(x)+\frac{1}{1-x} \\
& \begin{aligned}
f(x)(1-2 x)=\frac{x}{1-x}
\end{aligned} \\
& \begin{aligned}
& f(x)=\frac{x}{(1-x)(1-2 x)} \\
&= \frac{A}{1-x}+\frac{B}{1-2 x}= \\
&= \frac{2 x}{1-2 x}-\frac{x}{1-x} \\
&=2 x\left(1+(2 x)+(2 x)^{2}+\cdots\right)
\end{aligned} \\
& -x\left(1+x+x^{2}+\cdots\right) \\
& =\sum_{n=1}^{\infty}\left(2^{n}-1\right) x^{n} \\
& \left.a_{n}=2^{n}-1\right] .
\end{aligned}
$$

11.

$$
a_{1}<a_{2}<\ldots<a_{n}
$$

b
Find $\quad a_{i} \leq b<a_{i+1}$

$$
a_{j} \leq b
$$

$$
\begin{aligned}
f_{n} & =f_{\frac{n}{2}}+1 \\
& =1+1+f_{\left\lceil\frac{n}{4}\right\rceil} \\
& \vdots \\
& =\left\lceil\log _{2} n\right\rceil
\end{aligned}
$$

