Lost time: Gaupler's ruin problem

Q: What is $P\left(\right.$ lose $\left.\mid X_{0}=n\right)=: \bar{p}(n)$.
We found a recurrence relation:

$$
\left.\begin{array}{l}
\bar{p}(n)=\bar{p}(n+1) \cdot p+\bar{p}(n-1) \cdot(1-p) \\
\bar{p}(0)=1 \\
\bar{p}(N)=0
\end{array}\right\} \text { boundary/initial } \quad \text { conditions }
$$

Characteristic equation:

$$
x^{2}-\frac{1}{p} x+\frac{(1-p)}{p}=0
$$

solutions $\quad y_{1}=1, \quad y_{2}=\frac{1-p}{p}$
Case 1: $y_{1} \neq y_{2}$, ie. $p \neq \frac{1}{2}$.
Then, $\bar{p}(n)=\alpha y_{1}^{n}+\beta y_{2}^{n}=\alpha+\beta \cdot\left(\frac{1-p}{p}\right)^{n}$
Substitute intitial conditions:

$$
\left\{\begin{array} { l }
{ \overline { p } (0) = 1 } \\
{ \overline { p } (N) = 0 }
\end{array} \Leftrightarrow \left\{\begin{array} { l }
{ \alpha + \beta = 1 } \\
{ \alpha + \beta (\frac { 1 - p } { p }) ^ { N } = 0 }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
\beta=1-\alpha \\
\alpha+(1-\alpha)\left(\frac{1-p}{p}\right)^{N}=0
\end{array}\right.\right.\right.
$$

$$
\begin{aligned}
& \Leftrightarrow\left\{\begin{array}{l}
\alpha=\frac{\left(\frac{1-p}{p}\right)^{N}}{\left(\frac{1-p}{p}\right)^{N}-1} \\
\beta=1-\alpha=\frac{-1}{\left(\frac{1-p}{p}\right)^{N}-1}
\end{array}\right. \\
& \Rightarrow \quad \bar{p}(n)=\frac{\left(\frac{1-p}{p}\right)^{N}}{\left(\frac{1-p}{p}\right)^{N}-1}-\frac{1}{\left(\frac{1-p}{p}\right)^{N}-1}\left(\frac{1-p}{p}\right)^{n}=\frac{\left(\frac{1-p}{p}\right)^{N}-\left(\frac{1-p}{p}\right)^{n}}{\left(\frac{1-p}{p}\right)^{N}-1} .
\end{aligned}
$$

Case 2: $y_{1}=y_{2}$, ie., $p=\frac{1}{2}$.
Then, $\quad \bar{p}(n)=\alpha y_{1}^{n}+\beta n y_{1}^{n}=\alpha+\beta n$.
Substitute intitial conditions:

$$
\left\{\begin{array} { l }
{ \text { ute intitial conditions: } } \\
{ \overline { p } (0) = 1 }
\end{array} \Leftrightarrow \left\{\begin{array} { l }
{ \alpha = 1 } \\
{ \alpha + N \beta = 0 }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
\alpha=1 \\
\beta=-\frac{1}{N}
\end{array}\right.\right.\right.
$$

Thus, $\bar{p}(n)=\alpha+\beta n=1-\frac{n}{N}$.

Remark: We can also outerperet the Gamblers min protlous as a 1-D raudoue wale with absorbing boundaries s.t. we want to find P (hit O before we kit N)

(B). Randow wals in \mathbb{Z}^{d}

We considor the wiform r.w. in \mathbb{Z}^{d}
$d=1$:
$d=2$:

Quertion: Is the procoss recurrent or transicut?
We study $\sum_{n=0}^{\infty} p_{00}^{(n)}$.
d=1: Starting from D, we can only coure back in an even \# of steps.
$P_{\infty 0}^{(2 n)}=P_{r o b}$ to uore n tiuos baceward and n trues forward

$$
=\frac{\left(\frac{1}{2}\right) \times\left(\frac{1}{2}\right) \times \cdots \times\left(\frac{1}{2}\right)}{2 n} \times \underbrace{\binom{2 n}{n}}_{\begin{array}{c}
\text { Total \# of trajectories } \\
\text { cleoosing } n \text { times wher }
\end{array}}=\frac{\binom{2 n}{n}}{2^{2 n}}
$$

cleoosing n times whon theo trajectory goes formard.

$$
\Rightarrow \sum_{n=0}^{+\infty} p_{00}^{(n)}=\sum_{n=0}^{+\infty} \frac{\binom{2 n}{n}}{2^{2 n}}=\sum_{n=0}^{\infty} \frac{(2 n)!}{(n!)^{2} 2^{2 n}}
$$

Storling formula: $n!\sim\left(\frac{n}{e}\right)^{n} \sqrt{2 \pi n}$

$$
\begin{aligned}
\Rightarrow \frac{(2 n)!}{(n!)^{2} 2^{2 n}} & \approx\left(\frac{2 n}{e}\right)^{2 \sqrt{n}} \sqrt{2 \pi 2 n}\left(\frac{n}{e}\right)^{-2 n} \frac{1}{2 \pi n} \cdot \frac{1}{2^{2 n}} \\
& \approx \frac{1}{\sqrt{\pi} n}=\frac{1}{\left(\frac{1}{1} n\right)^{1 / 2-1}}
\end{aligned}
$$

$$
\Rightarrow \sum_{n=0}^{+\infty} p_{00}^{(n)}=+\infty
$$

\Rightarrow The R.W. is recurrent when $p=\frac{1}{2}$.
Remark: When $d=1$ and $p \neq \frac{1}{2}$, we can slow that R.W. is transient!
 (casymetric RiM.) /possible

- For $d \geq 2$, we can use a similar approach, but the problem becomes more and wore complex as d increases, so we are going to use a different approach: characteristic functions.
Notation: unit rectors in $\mathbb{Z}^{d}: \quad \overrightarrow{e_{j}}=(0, \ldots, 0,1,0, \ldots, 0)$ (e.9., $d=3: \quad \overrightarrow{e_{1}}=(1,0,0), \overrightarrow{e_{2}}=(0, n, 0), \vec{e}_{3}=(0,0,1)$).

So, the walks tares isth step \vec{X}_{i} with probabilities:

$$
P\left(\vec{x}_{i}=\vec{e}_{j}\right)=P\left(x_{i}=-\vec{e}_{j}\right)=\frac{1}{2 d}
$$

Let $\quad \vec{S}_{0}=0$ initial position
$\vec{S}_{n}=$ position after n

$$
=\vec{x}_{1}+\vec{x}_{2}+\cdots+\vec{x}_{n} \quad(n \geq 1) .
$$

Then, $\vec{S}_{n+1}=\vec{S}_{n}+\vec{X}_{n+1}$, so

$$
P\left(\vec{S}_{n+1}=\vec{X}+\vec{e}_{j} \mid \vec{\delta}_{n}=\vec{x}\right)=P\left(\vec{X}_{n+1}=\vec{g}_{j}\right)=\frac{1}{2 d},
$$

and

$$
P\left(\vec{S}_{n+1}=\vec{X}-\vec{e}_{j} \mid \vec{\delta}_{n}=\vec{x}\right)=P\left(\vec{X}_{n+1}=-\vec{e}_{j}\right)=\frac{1}{2 d} .
$$

This defines the transition probabilities for the symmetric R,W. an \mathbb{Z}^{d}.

For $\vec{k} \in \mathbb{R}^{d}, k=\left(k_{1}, \ldots, k d\right)$ we can define $\Phi_{n}(\vec{k})$ to be the characteristic junction of \vec{S}_{n} evaluated at \vec{k} :

$$
\Phi_{n}(\vec{k})=\mathbb{E}\left[e^{i \vec{k} \cdot \vec{S}_{n}}\right]
$$

Recall Euler's forme la:

$$
\begin{aligned}
& \text { Recall } \\
& e^{i \theta}=\cos \theta+i \sin \theta \text {. }
\end{aligned}
$$

where $\vec{k} \cdot \vec{S}_{n}$ is the standard dot product in \mathbb{R}^{d}, ie.,

$$
\vec{x} \cdot \vec{y}=x_{1} y_{1}+\cdots+x_{n} y_{n},
$$

