Last time we sow that
If $i \Longleftrightarrow j$ and i is recurrent, Teen j is recurrent as well.
To finish tho proof, we weed the following Proposition.
We can characterize recurrence and transience using n-step tail probabilities:
Proposition: i is $\left\{\begin{array}{l}\text { recurrent of } \sum_{n=0}^{+\infty} p_{i i}^{(n)}=\infty \\ \text { transient of } \sum_{n=0}^{+\infty} p_{i i}^{(n)}<\infty .\end{array}\right.$
Proof): $\mathbb{E}\left[N_{i} \mid X_{0}=i\right]=\sum_{n=0}^{\infty} \mathbb{E}\left(1_{\left(x_{n}=i\right)} \mid x_{0}=i\right)=\sum_{n=0}^{\infty} P\left(x_{n}=i \mid x_{0}=i\right)$

$$
=\sum_{n=0}^{n=0} p_{i i}^{(n)} .
$$

Consequences: (i) Recurrence \& Transience are class properties call states in a communicating class are either all recurrent or all transient)
(ii) We can relax the hypothesis of the corollary as " i recurrent \& j accessiblo from i "
(if i is not accessible, $f_{i} \leq 1-p_{i j}^{(m)}<1$ for same in).
Examples: Gambler's min problezer \& Random Walk
(Ross, Example 4.19, Sec. 4.5.1.)
We use the concepts introduced so for to study fundamentet examples of stochastic processes.
(4). Gambler's min. Smith has $\$ n$, and plays a gave with probability of winning $0<p<1$; winning gives him \$1
losing takes away $\$ 1$.
Smith plays untie he got broke or reaches a goal of having $\$ N, N \geq n$.
smith's wealth follows a M.C.

Transition matrix: $\left(\begin{array}{ccccc}0 & 1 & 2 & N+N \\ 1 & 0 & 0 & \cdots & 0 \\ 1-p & 0 & p & 0 & \cdots \\ 0 & 1 p & 0 & p & \cdots \\ 0 & 0 & 0 \\ 0 & \cdots & 0 & i_{p-p} & 0 \\ 0 & 1\end{array}\right)$
period 2
3 communicating classes $\{0\},\{N\},\{1, \cdots, N-1\}$. $\underset{\text { operiode }}{ }$ recurrent for transient $t_{N-1}<1-p<1$
Consequence: At the end of the gave, eiferr sarthe wins or ho goes broke, and probability that gave finishers $=1$.

Question: What is $P(\underbrace{\{\text { with goes prove }}_{R} \mid X_{0}=n)$?
Let $p(n)=P\left(R \mid X_{0}=n\right)$.
By definition, $p(0)=1$ and $p(N)=0$
For, $1 \leq n \leq N-1$,

$$
\begin{aligned}
P(n) & =P\left(R \mid X_{1}=n+1\right) \cdot P\left(X_{1}=n+1 \mid X_{0}=n\right) \\
& +P\left(R \mid X_{1}=n-1\right) \cdot P\left(X_{1}=n-1 \mid X_{0}=n\right) \\
& =P(n+1) \cdot P+P(n-1) \cdot(1-p)
\end{aligned}
$$

This is a second ordor linear recurrence relation. To solve it, we consider the o characteristic equation $p x^{2}-x+(1-p)=0$ and solve it:

$$
\begin{array}{ll}
p(X-1)-(1-p)(X-1)=0 & X_{1}=1 \\
(X-1)(p X-(1-p))=0 & X_{2}=\frac{1-p}{p}=a
\end{array}
$$

Case 1: $X_{1} \neq x_{2}$. Ton $p(n)=\alpha X_{1}^{n}+\beta x_{2}^{n}$, where α and β are determined by

$$
\begin{aligned}
& \alpha \text { and } \begin{array}{l}
\beta \text { are determined by } \\
\left\{\begin{array} { l }
{ p (0) = 1 } \\
{ p (N) = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
p(0)=\alpha+\beta=1 \\
p(N)=\alpha \cdot 1^{N}+\beta\left(\frac{1-p}{p}\right)^{N}=0 \\
\Rightarrow \beta=1-\alpha \text { and } \alpha+(1-\alpha)\left(\frac{1-p}{p}\right)^{N}=0
\end{array}\right.\right. \\
\text { and } p(n)=\frac{a^{N}-a^{n}}{a^{N}-1}=\left(1-\frac{a^{n}-1}{a^{N}-1}\right) .
\end{array}{ }^{2}=\frac{\left(\frac{-p}{p}\right)^{N}}{1-\left(\frac{1-p}{p}\right)^{N}}
\end{aligned}
$$

Case 2: $p=\frac{1}{2}, \Rightarrow x_{1}=x_{2}=1$, and

$$
\begin{array}{ll}
& p(n)=\alpha x_{1}^{n}+\beta n x_{1}^{n}=\alpha+\beta n \\
p(0)=1=\alpha \\
p(N)= & 0=\alpha+N \beta \quad \Rightarrow \beta=-\frac{1}{N}
\end{array}
$$

and $p(n)=1-\frac{n}{N}$.

