Uniforvization (Section 6.7)

- Let $\{X(t), t \geq 0\}$ be a CTMC in which the mean time spent in a state is the same for all states, ie., $\nu_{i}=\nu$ for all i.
Let $N(t)=\#$ of state transitions by time t.

$N(t)=\#$ steps by time t.

Since time between 2 state transitions is $E_{x p}(v)$, then $N(t)$ is a Poisson process of rate v !

Transition probabilities $P_{i j}(t)$ for $X(t)$, we can condition on $N(t)$:

$$
\begin{aligned}
P_{i j}(t) & =P(X(t)=j \mid X(0)=i) \\
& =\sum_{n=0}^{\infty} P(X(t)=j, N(t)=n \mid X(0)=i) \\
& =\sum_{n=0}^{\infty} P(X(t)=j \mid X(0)=i, N(t)=n) P(N(t)=n \mid X(0)=i) \\
& =\sum_{n=0}^{\infty} P(X(t)=j \mid X(0)=i, N(t)=n) e^{-\nu t} \frac{(v t)^{n}}{n!}
\end{aligned}
$$

What is $P(X(t)=j \mid X(0)=i, N(t)=n)$?
Given that there were n transitions by five t, since the distribution of time spent in eacle state is the same, $P(X(t)=j \mid X(0)=i, N(t)=n)=P_{i j}^{n}$, where P^{n} is the n-step transition probability of the embedded chain.

$$
\text { Their. } \quad p_{i j}(t)=\sum_{n=0}^{\infty} p_{i j}^{n} e^{-\nu t} \frac{(\nu+)^{n}}{n!} \text {. }
$$

This is of ten useful for computing approximations of $P_{i j}(t)$; by taking a partial sum.

- How can we turn any CTMC into are with $\nu_{i}=\nu, \forall_{0}$? Consider a $\operatorname{CTMC} X(t)$ for which the ν_{i} are bounded. Let ν be s.t.

$$
\nu_{i} \leq \nu \quad \forall_{i} .
$$

In state i the process leaves at rate ν_{i}. This is equivalent to supposing the transitions acer at rate v.ie.emerent but. only the fraction $\frac{\nu_{i}}{\nu}$ of the transitions are real

- The remaining $1-\frac{V_{i}}{\nu}$ "transition" to state i itself.

Thus, $X(t)$-spends $E_{x p}(\nu)$ in state i, and

- transitions to j with probability:

$$
P_{i j}^{*}= \begin{cases}1-\frac{\nu_{i}}{\nu}, & \text { if } i=j \\ \frac{\nu_{i}}{\nu} P_{i j}, & \text { if } i \neq j .\end{cases}
$$

Thus, The transition probabilities can be computed as

$$
P_{i j}(t)=\sum_{n=0}^{\infty} p_{i j}^{* n} e^{-\nu t} \frac{(\nu t)^{n}}{n!}
$$

where $p^{* n}$ are the n-stage transitions of tho discrete-time $M C$ with transition probabilities $P_{\text {is }}^{*}$. This technique is called uniformization.
Example: Recall the 2 -state CTMC (6.11 textbook)
state 0 : working, state 1: broken time to brakdown $\sim \operatorname{Exp}(\lambda)^{\nu_{0}}$
time to repair $\sim \operatorname{Exp}(\mu)^{-\nu_{1}}$.

Q: Find $P_{i j}(t)$.

$$
\begin{align*}
& P_{0 A}=1 \tag{0}\\
& P_{10}=1
\end{align*}
$$

Solution: Let $v=\lambda+\mu$
Uniformized version: $P_{00}^{*}=1-\frac{\nu_{0}}{\nu}=\frac{\mu}{\lambda+\mu} ; P_{01}^{*}=\frac{\lambda}{\lambda+\mu}$

$$
P_{10}^{*}=\frac{\mu}{\lambda+\mu} ; \quad P_{11}^{*}=\frac{\lambda}{\lambda+\mu}
$$

$$
\begin{aligned}
& P^{*}={ }_{1}^{0}\left(\begin{array}{cc}
0 & 1 \\
\mu & \lambda \\
\mu & \lambda
\end{array}\right) \cdot \frac{1}{\lambda+\mu} \quad\left(P^{*}\right)^{2}=\frac{1}{(\lambda+\mu)^{2}}\left(\begin{array}{ll}
\mu & \lambda \\
\mu & \lambda
\end{array}\right)\left(\begin{array}{ll}
\mu & \lambda \\
\mu & \lambda
\end{array}\right) \\
& \Rightarrow p^{* n}=p^{*} \\
& =\frac{1}{(\lambda+\mu)^{2}}\left(\begin{array}{ll}
\mu(\lambda+\mu) & \lambda(\lambda+\mu) \\
\mu(\lambda+\mu) & \lambda(\lambda+\mu)
\end{array}\right) \\
& =\frac{1}{\lambda+\mu}\left(\begin{array}{ll}
\mu & \lambda \\
\mu & \lambda
\end{array}\right)=\rho^{*} \\
& \Rightarrow P_{i j}(t)=\sum_{n=0}^{\infty} \underset{P_{i j}^{* n}}{P_{i j}^{i}+7 n 21} e^{-(\lambda+\mu) t}\left(\frac{t(\lambda+\mu))^{n}}{n!}=e^{-(\lambda+\mu) t}+\sum_{n=1}^{\infty} P_{i j}^{+} e^{-(t+n) t} \frac{(t(\lambda+\mu))^{n}}{n!}\right. \\
& =e^{-(\lambda+\mu) t}+\rho_{i j}^{*} e^{-(\lambda+\mu) t} \underbrace{\sum_{n=1}^{\infty} \frac{(t(\lambda+\mu))^{n}}{n!}}_{e^{(\lambda+\mu) t}-1} \\
& =e^{-(\lambda+\mu) t}+P_{i j}^{*}\left(1-e^{-(\lambda+\mu) t}\right) \\
& \Rightarrow P_{00}^{*}(t)=e^{-(\lambda+\mu) t}+\frac{\mu}{\lambda+\mu}\left(1-e^{-(\lambda+\mu) t}\right) \\
& =\frac{\mu}{\lambda+\mu}+\frac{\lambda}{\lambda+\mu} e^{-(\lambda+\mu) t}
\end{aligned}
$$

We recover the same formulas as we found in lecture 29 on March 20, wheen we used two forward and backward Koluogorov equations!

