Time reversibility

Let's assume that X(t) is irreducible and has a stationary distribution $\overline{\pi}$. Assume also that $X(0) \sim \overline{\pi}$, so that for all t, $X(t) \sim \overline{\pi}$.

The reversed process. Now fix a large t, and considere the reverse chain $\overline{X}(s) := X(t-s)$ for $0 \le s \le t$. We first claim that conditional on $\overline{X}(0)$, the true \overline{X} spends in state i is $\exp(\gamma_i)$, just like X. Indeed,

$$P(\overline{X}(s)=i \text{ for } se[0,r] | \overline{X}(0)=i)$$

$$= P(X(t-s)=i \text{ for } se[0,r] | X(t)=i)$$

$$= P(X(s)=i \text{ for } se[t-r,t] | X(t)=i)$$

$$= \frac{P(X(s)=i \text{ for } se[t-r,t])}{P(X(t)=i)}$$

$$= \frac{P(X(s)=i \text{ for } se[t-r,t] | X(t-r)=i) P(X(t-r)=i)}{P(X(t)=i)}$$

$$= \frac{P(T_i \ge r) \pi_i}{\pi_i} = e^{-\gamma_i S}$$

Therefore, the time \overline{X} spends in state \overline{i} is also Exp(Vi). Moreover, note that the embedded chain of \overline{X} is the timereversal of the embedded chain of X. Thus, by the results for discret-time MC, the embedded chain of \overline{X} has transitions $q_{\overline{i}} = \underbrace{\int}_{\overline{U_i}} \underbrace{P_i}_{\overline{U_i}}$, where $\overline{U_i}$ is the stationary distribution

of the embedded chain for X, which we showed in the
last lecture satisfies
$$T_i = \frac{\sigma_i}{v_i} \cdot \frac{1}{z}$$
 anounalizing constant.

=> The embedded chain of
$$\overline{X}$$
 has transitions
 $q_{ij} = \frac{\pi_i \gamma_j \overline{z}}{\pi_i \gamma_i \overline{z}} = \frac{\pi_i \gamma_j \overline{p_{ji}}}{\pi_i \gamma_i}$.

Therefore,
$$\overline{X}$$
 is the same as X if $Pij = 9ij$, i.e.,
 $Pij = \overline{Ti} \frac{Yi}{J} \frac{Yi}{J} \frac{Pji}{I} \stackrel{(=)}{=} \overline{Ti} \frac{Yi}{J} \frac{Pji}{J} \stackrel{(=)}{=} \overline{Ti} \frac{Yi}{J} \frac{Pji}{J} \stackrel{(=)}{=} \overline{Ti} \frac{Yi}{J} \frac{Pji}{J} \stackrel{(=)}{=} \overline{Ti} \frac{Yi}{J} \frac{Pji}{J} \stackrel{(=)}{=} \overline{Ti} \frac{Pji}{J} \frac{Pji}{J} \frac{Pji}{J} \frac{Pji}{J} \stackrel{(=)}{=} \overline{Ti} \frac{Pji}{J} \frac{Pji}$

Defruition: The CTHC is true-reversible of it has a stationary distribution π and $\pi_i q_{ij} = \pi_j q_{ji}$ for all states i and j. Live in the discrete case, The left-hand side $\pi_i q_{ij} = \pi_i \mathcal{V}_i \rho_{ij}$ can be interpreted as the frequency at which the chain jumps from i to j, and the RHS is $\pi_j q_{ji} = \pi_j \mathcal{V}_j \rho_{ji}$ the frequency at which if jumps from j to i.

Example: Birth and death processes:

<u>Proposition</u>: Any birth and death process with a stationary distribution is time-reversible. <u>Proof idea</u>: Between two transitions $i \rightarrow ith -i$ $i \rightarrow ith$, the process has to go from $ith \rightarrow i$ exactly once. Hence, in the long run, it will jump as many trues from i to its as from its to i. Moreover, for [i-j]>1, both sides will be D. $\frac{ho}{\lambda} \frac{H/H/s}{gueue}: s \text{ servers, new customers are present, frey leave}$ $\lambda \text{ Poisson process, When n customers are present, frey leave}$ $at \text{ rate} \qquad \mathcal{M}_n = \begin{cases} n\mu & \text{if } n \in S \\ s\mu & \text{if } n \in S \\ s\mu & \text{if } n \geq S \\ \text{the clients form a Poisson process with rate } \lambda.$ $\frac{Prod}{r}:$ $Stationary \text{ distribution}: \quad \pi_i = \frac{\lambda_0 \lambda_1 \dots \lambda_{i-1}}{r_i} \pi_0$ $r_i = \begin{cases} \lambda_i^i & \text{if } s \\ \mu^i, \text{i!} \\ s\mu^i, \text{s! } s^{2-S} & \text{if } \geq S \\ S & \text{if } s^i \\ s\mu^i & \text{s!} \end{cases}$ $\sum_{i=1}^{N} \frac{s_i^i}{(s_i^i)} \frac{s_i^i}{s!}$ $\sum_{i=1}^{N} \frac{s_i^i}{(s_i^i)} \frac{s_i^i}{s!}$

converges L=> X<SM.

let X(t) be the number of customers present at true t.

Y(t) = # of people who have left by time t.

By the proposition, X(t) is true-reversible. Therefore, the reverse process $\overline{X}(s)$ has the same rates v_i and transition probabilities p_{ij} . By definitive of X(t), the trues X increases by 1 form a Poisson process of rate λ . Therefore, the times when $\overline{X}(s)$ increases by 1 also form a Poisson (N) process. But those are exactly the trues when X(t)decreases by 1, i.e. a client leaves.