Graph representation of a Markov Chain:

We can represent a Marrow chain land its transition matrix) as a directed graph, where each node represents a state, and s.t. we draw an arrow from x to y if Rxy>0 with weight fig. This graph is called a transition diagram.

Example (Ross 4.2): $P = o \begin{pmatrix} P & I-P \\ I-P & P \end{pmatrix}$, $S = \{0, 1\}$.

Example: Suppose we have a M.C. on $S = \{1, 2, 3\}$ with transition matrix $P = \begin{pmatrix} 0 & 1 & 0 \\ 2 & 0 & 0.5 \\ 3 & 0.3 & 0.3 & 0.4 \end{pmatrix}$. The transition diagram is

3.4.7. Chapenan-Kolmogorov equations M. En is the distribution of Xn JM is the distr. of Xa We can generalize this result.

Definition: For
$$n \in \mathbb{N}$$
, we define the n-step transition
probability:
 $p_{ij}^{(n)} = P(X_n = j \mid X_0 = i)$.
This defines the n-step transition matrix $(P_{ij}^{(n)})_{ij} = P_{ij}^{(n)}$.
Remark: Because we are in the case of a homogeneous
Marror Chain,
 $P(X_{nTK} = j \mid X_K = i) = P_{ij}^{(n)}$, $\forall K$.
Question: How can we compute the n-step transition
 $probabilities P_{ij}^{(n)}$?
 $\underline{n = 0}$: $P(X_K = j \mid X_K = i) = \begin{cases} i & \text{if } i = j \\ o & \text{if } i \neq j \end{cases}$
 $\underline{n = 0}$: $P(X_K = j \mid X_K = i) = \begin{cases} i & \text{if } i = j \\ o & \text{if } i \neq j \end{cases}$
 $\underline{n = 1}$: $P(X_{in} = j \mid X_K = i) = \begin{cases} i & \text{if } i = j \\ o & \text{if } i \neq j \end{cases}$
 $\underline{-2} P_{i}^{(n)} = Td_{S}$.
 $\underline{n = 1}$: $P(X_{in} = j \mid X_K = i) = P_{ij}$

$$P_{ij}^{(n+m)} = P(X_{n+m} = j \mid X_o = i)$$

$$= \sum_{k} P(X_{n+m} = j \mid X_o = i) X_o = i)$$

$$= \sum_{k} P(X_{n+m} = j \mid X_n = k, X_o = i) P(X_n = k, X_o = i) P(X_n = k, X_o = i)$$

$$= \sum_{k} P(X_{n+m} = j \mid X_n = k) P(X_n = k \mid X_o = i)$$

$$= \sum_{k} P(X_{n+m} = j \mid X_n = k) P(X_n = k \mid X_o = i)$$

Theorem (Chapman - Kolmagorar equations):

$$P_{ij}^{(n+iw)} = \sum_{k} P_{ik}^{(w)} P_{ij}^{(m)}$$
Corollary (Hatrix formulation):

$$P_{k}^{(n+iw)} = P_{k}^{(m)} P_{k}^{(m)}$$

$$P_{k}^{(m)} = P_{k}^{(m)}$$

Remark: Communication is an equivalence relation: (i) i i i (Since P⁽ⁱ⁾ - 1>0) Reflexivity (ii) if i j, turn j i (by def.) symmetry (iii) if i j and j i k, then ink Transtwity. Therefore, we can partition the state space into communicating leases. Example: In the example above, the communicating classes are for, §4,5,6}, §4.2,3}. Definition: A Marrow chain is irreducible if there is only are communicating class. Example: I-D random walk Example: I-D random walk (X) here is irreducible if 04p21.