Recall: Continuous-time Markov (hains

$$P[X(stt)=j|X(s)=i, X(u)=viw, O \le u \le s)$$

 $= P(X(stt)=j|X(s)=i).$
• We assume stationarity, i.e. $P(X(sttl=j|X(s)=i))$ is indep.
of S.
• Consequence of Stationarity:
Lemma: Suppose the CTHC is in state i at time a.
Lemma: Suppose the Spect in state i before jumping to
let $T_i = additional$ time spect in state i before jumping to
another state. Then, T_i is memory less.
Proof idea, $P(T_i > stt|T_i > s) =$
 $= P(X(r)=i, re(associal)|X(u)=i, ue[a,arss])$
 $i = P(X(r)=i, re(associal)|X(ars)=i)$
the same for all a_is by
stationarity.
 $= P(T_i > t).$
Thus, T_i is Exp(v_i) for some value of the parameters v_i .
Lemma: The amount of time T_i that $X(t)$ spends in state i
before jumping to another state is independent of the state it

jumps to. <u>Proof idea:</u> Information as to how-long the process has been in stake i should be irrelevant to the prediction of the next state by the Markon property:

Examples:
(6.2) Poisson process:
$$M_n = 0$$
 $\forall n; \lambda_n = \lambda \quad \forall n$
(6.3) $\forall ule process: M_n = D \quad \forall n; \lambda_n = n\lambda \quad \forall n$
(6.4) linear growthe model with immigration
 $M_n = nM \quad (n \ge 1), \quad \lambda_n = n\lambda + \bigoplus \quad (n \ge 0)$
 $M_n = nM \quad (n \ge 1), \quad \lambda_n = n\lambda + \bigoplus \quad (n \ge 0)$
 $\sum_{immigration rate.}^{immigration rate.}$

times, given
$$X(t) = n$$
, $X(t+h) = \begin{cases} X(t)-1 & w.p. \\ yuh + o(h) \end{cases}$
 $X(t) + 1 & w.p. & \lambda_nh + o(h) \end{cases}$

and
$$X(t+h) > X(t) + 1$$
 or $< X(t) - 1$ w.p. $o(h)$.
So, $X(t+h) = X(t)$ w.p. $1 - (\lambda_n + \gamma u_n)h + o(h)$