$$\frac{\operatorname{Ruorus}:}{\operatorname{Ruorus}:} \operatorname{Green} \operatorname{Ruot} N(t)=n, \ \operatorname{Ruorus}:n \ \operatorname{arrival} \operatorname{Ruorus}:S_{1,...,S_{n}}$$
have the same distribution as the order statistics corresponding to n independent random variables uniformly distributed on the interval [0,t].
Definition: Let $Y_{1,...,Y_{n}}$ be v.v.'s Their order statistics
 $Y_{(1)}, Y_{(21,...,Y_{n})} Y_{(n)}$ are the values of $Y_{1,...,Y_{n}}$ in increasing order.
Lost time we should that if $Y_{1,...,Y_{n}}$ are i.i.d. Uniform (SO.IS),
Rue point pdf of $Y_{(01,...,Y_{n})}$ is $f(Y_{(11,...,Y_{n})}) = \frac{n!}{t^{n}}$ for any $0 \le y_{1,...,Y_{n}}$.
Rue point pdf of $Y_{(01,...,Y_{n})} = f(Y_{(11,...,Y_{n})}) = \frac{n!}{t^{n}}$.
Rue point pdf of $Y_{(01,...,Y_{n})} = y_{1,...,Y_{n}} = y_{1,...,Y_{n}}$ in increasing $y_{1,...,Y_{n}}$ is $f(Y_{(11,...,Y_{n})}) = \frac{n!}{t^{n}}$.
Rue point pdf of $Y_{(01,...,Y_{n})} = y_{1,...,Y_{n}} = y_{1,...,Y_{n}}$ is $f(Y_{(11,...,Y_{n})}) = \frac{n!}{t^{n}}$.
Rue point pdf of $Y_{(11,...,Y_{n})} = y_{1,...,Y_{n}} = y_{1,...,Y_{n}}$.
Rue point pdf of $Y_{(11,...,Y_{n})} = y_{1,...,Y_{n}} = y_{1,...,Y_{n}}$.
Rue point pdf of $Y_{(11,...,Y_{n})} = y_{1,...,Y_{n}} = y_{1,...,Y_{n}}$.
Rue point pdf of $Y_{(11,...,Y_{n})} = y_{1,...,Y_{n}} = y_{1,...,Y_{n}}$.
Rue point pdf of $Y_{(11,...,Y_{n})} = y_{1,...,Y_{n}} = y_{1,...,Y_{n}}$.
Rue point pdf of $Y_{(11,...,Y_{n})} = y_{1,...,Y_{n}} = y_{1,...,Y_{n}}$.
Rue point $\{S_{1} = s_{1,...,Y_{n}} = y_{1,...,Y_{n}} = y_{1,...,Y_{n}}$.
Rue point $\{S_{1} = s_{1,...,Y_{n}} = y_{1,...,Y_{n}} = y_{1,...,Y_{n}}$.
Rue same as the event that the first n+k interarrise true.
Rues $T_{1,...,Y_{n}} = x_{1,...,Y_{n}} = y_{1,...,Y_{n}} = y_{1,....$

Now suppose that we label events of a Poisson process into k
possible types s.t. at each true s, there is a distribution
$$P_i(s)$$

 $(i=1,...,k)$ s.t. $P(event occurring at true s is type i) = P_i(s)$
 $(the type selection is rudep. of what previously occurred)$
Proposition: let $N_i(t) = #$ Type i events by true t. Then, $N_i(t),..., N_k(t)$
ore independent Poisson r.v.'s write means $E[N_i(t)] = \lambda \int_0^t P_i(s) ds$.
Remare: We recover part of the Poisson thinning proposition: if $P_i=P$,
then $E[N_i(t)] = \lambda \int_0^t p ds = p \cdot \lambda t$.
Props: $P(N_i(t)=n_1,...,N_k(t)=n_k)$
 $= P(N_i(t)=n_1,...,N_k(t)=n_k(N_i(t)=\sum_{i=1}^k n_i) P(N_i(t)=\sum_{i=1}^k n_i)$

Conditional on n events, annual times are ridep. and uniform
on EQ,t], so
$$P(event is type i) = \int_{0}^{t} P(event is type i)$$
 mut accurs at s) 1/3
 $= \frac{1}{t} \int_{0}^{t} P_{i}(t) ds == P_{i}$
Each of the n events has prob P_{i} of being type i arrivel
and has are independent.
 $= P(N, (t) = N_{1}, ..., N_{K}(t) = N_{K} | N(t) = \sum n_{i}) = \frac{n!}{n_{1}! \cdots n_{K}!} P_{K}^{N_{1}} \cdots P_{K}^{N_{K}}$

=>
$$P(N_{1}(t) = n_{1}, ..., N_{k}(t) = n_{k}) = \frac{m!}{n_{1}! \cdots n_{k}!} \overline{P}_{1}^{n_{1}} \cdots \overline{P}_{k}^{n_{k}} \frac{(A+1)e}{n_{1}!} e^{-\lambda t \overline{p}_{k}}$$

= $\left(\frac{(A+\overline{p}_{1})^{n_{1}}e^{-\lambda t \overline{p}_{1}}}{n_{1}!}\right) \cdots \left(\frac{(A+\overline{p}_{k})^{n_{k}}e^{-\lambda t \overline{p}_{k}}}{n_{k}!}\right)$
(we used that $n_{1} t \cdots t n_{k} = n$ and $\overline{Z} = \overline{p}_{i} = 1$)
=> $N_{1}(t), \dots, N_{k}(t)$ are independent and $N_{0}(t) \sim P_{0}(sson(A, S_{0}, P_{i}(s)ds))$

Example: let's get base to our example: individuals indeputently
get infected following a
$$\lambda$$
-foisson process, s.t. symptoms appear
after time T since infection where T has CDF G.
N.(t) = # individuals infected with an symptoms
N_L(t) = # individuals infected with no symptoms
N_L(t) = # individuals infected with no symptoms
N_L(t) = # individuals infected with no symptoms
N(t) = N_1(t) + N_2(t) = total # of individuals infected.
Goal: Find IE[N_2(t)], which is an estimate of N_2(t).
Solution: Fix t and use previous proposition with k=2.
P(N_1(t) = n_1, N_2(t) = n_1) = P(N_1(t) = n_1, N_2(t) = n_2) | N(t) = n_1 + n_2).
For $D \leq s \leq t$, an individual infected at time s has
symptoms by time t w.p. $G(t-s)$ and has no symptoms
by time t w.p. $\frac{1-G(t-s)}{P_1(s)}$
 $= N_1(t) \sim Poisson (\lambda \int_s^t G(t-s)ds)$
 $= \sum_{k=1}^{k} [N_k(t)] = \int_0^t \int_0^t (-G(t-s)ds)$
To estimate λ , since we now N_1(t), say N_1(t) = n_1 (number of
people infected with symptoms by time t), thus we
 $N_1 \approx IE[N_1(t)] = \lambda \int_0^t G(t-s)ds$ to get an estimate
 $\hat{\lambda} = \frac{n_1}{\sqrt{\frac{1}{6}(t+s)ds}} \Rightarrow \hat{n}_2 = \hat{\lambda} \int_0^t (t-G(t+s))ds - \frac{n_1 \int_0^t (t-G(t+s))ds}{\sqrt{\frac{1}{6}(t+s)ds}}$
 $e.g., t = (s days, G \sim Exp(\frac{1}{codays}), n_1 = 2000, then n_2 = 000 \frac{t^2}{\sqrt{\frac{1}{6}(t+s)ds}}$

= 2000.
$$\frac{10(1-e^{-16/10})}{16-10(1-e^{-16/10})}$$
, $\hat{n}_2 \approx 114$.