2. Further properties.

Ruoorem (Superposition): Let $\left\{N_{1}(t), t \geq 0\right\} \&\left\{N_{2}(t), t \geq 0\right\}$ be independent Poisson processes of rates λ_{1}, λ_{2}. Let $N(t)=N_{1}(t)+N_{2}(t)$ Then, $N(t)$ is a Poisson process of rate $\lambda_{1}+\lambda_{2}$.

Proof: We use the second definition.

$$
\text { (1). } N(0)=N_{1}(0)+N_{2}(0) \text {. }
$$

(2). independent increments $s_{1}<s_{2} \leq t_{1}<t_{2}$

$$
\begin{aligned}
& +N_{1}\left(s_{2}\right)-N_{1}\left(s_{1}\right) \text { index of } N_{1}\left(t_{2}\right)-N_{1}\left(t_{1}\right) \\
& +\mid N_{2}\left(s_{2}\right)-N_{2}\left(s_{1}\right) \text { index of } N_{2}\left(t_{2}\right)-N_{2}\left(t_{1}\right) \\
& \Rightarrow N\left(s_{2}\right)-N\left(s_{1}\right) \text { index of } N\left(t_{2}\right)-N\left(t_{1}\right)
\end{aligned}
$$

(3).

$$
\begin{aligned}
& \text { 3). } \quad P(N(t+h)-N(t)=1)=P\left(N_{1}(t+h)-N_{1}(t)=1 \& N_{2}(t+h)-N_{2}(t)=0\right) \\
& +P\left(N_{1}(t+h)-N_{1}(t)=0 \& N_{2}(t+h)-N_{2}(t)=1\right)
\end{aligned}
$$

index of N_{1} and N_{2}

$$
\begin{aligned}
& \stackrel{b}{=} P\left(N_{1}(t+h)-N_{1}(t)=1\right) P\left(N_{2}(t+h)-N_{2}(t)=0\right) \\
& +P\left(N_{1}(t+h)-N_{1}(t)=0\right) P\left(N_{2}(t+h)-N_{2}(t)=1\right) \\
& =\left(\lambda_{1} h+0(h)\right)\left(1-\lambda_{2} h+0(h)\right)+\left(\lambda_{2} h+0(h)\right)\left(1-\lambda_{1} h+o(h)\right) \\
& =\lambda_{1} h-\lambda_{1} \lambda_{2} h^{2}+0(h)+0(h)+\lambda_{2} h-\lambda_{1} \lambda_{2} h^{2}+o(h) \\
& =\left(\lambda_{1}+\lambda_{2}\right) h+o(h) .
\end{aligned}
$$

(4) Similarly, show (exercise) that $P(N(t+h)-N(t)=0)=$

$$
=1-\left(\lambda_{1}+\lambda_{2}\right) h+o(h)
$$

Example: Students cave to class by either using door 1 or door 2.

Suppose the entrance processes $x(t)$ and $y(t)$ for the 2 doors are independent and poisson (unlikely in reality...)
Find: (a) $P\left(1^{\text {st }} 2\right.$ students in class took door 1)
(b) Distribution of total $\#$ of students of time t.
(c). Distribution of total \# of students by time t who took door 1, given that $(x+y)(t)=n$.

Solution:
(a). $P\left(1^{\text {st }}\right.$ student took door 1$)=$

$$
\begin{aligned}
& P(1 \sum_{\operatorname{Exp}(\lambda)}=P(\underbrace{\text { firstarrival time of } X}_{\text {Exp }(\mu)}<\text { first arrival time of } y)=\frac{\lambda}{\lambda+\mu} \text {. }
\end{aligned}
$$

By the no memory property (if firstarrival of $X_{\text {is }} T_{1}=t$, then starting at time t, next arrival of X is $\operatorname{sep}(\lambda)$ and next arrival of y is Exp $\left(y_{1}\right)$)
$\Rightarrow P\left(2^{\text {nd }}\right.$ student took door 1) $=\frac{\lambda}{\lambda+\mu}$.
$\Rightarrow P\left(1^{\text {at }}\right.$ two students tore door 1$)=\left(\frac{\lambda}{\lambda+\mu}\right)^{2}$.
(b). $x+y$ is a Poisson process of rate $\lambda+\mu$,
\Rightarrow \# students by tine $t \sim \operatorname{Poisson}((\lambda+\mu) t)$
(c).

$$
\begin{aligned}
& P(X(t)=k \mid X(t)+y(t)=n) \\
& =\frac{P(x(t)=k, x(t)+y(t)=n)}{P(x(t)+y(t)=n)}=\frac{P(x(t)=k, y(t)=n-k)}{P(x(t)+y(t)=n)} \\
& =\frac{P(x(t)=k) P(y(t)=n-k)}{n}=\frac{(\lambda t)^{k} e^{-\lambda t}}{k!} \cdot \frac{(\mu t)^{n-k} e^{-\mu t} n!}{(n-k)!} \frac{((\lambda+\mu) t)^{n} e^{-(\lambda+\mu+k}}{k} \\
& =\frac{\lambda^{k} \psi^{k} e^{-\lambda t} \mu^{n-k} \mu^{n k} e^{\mu^{k}}}{(\lambda+\mu)^{n} t^{n} e^{-(\lambda+p) t}} \cdot \frac{n!}{k!(n-k)!}=\frac{\binom{n}{k} \lambda^{k} \mu^{n-k}}{(\lambda+\mu)^{n}} \\
& =\binom{n}{k}\left(\frac{\lambda}{\lambda+\mu}\right)^{k}\left(\frac{\mu}{\lambda+\mu}\right)^{n-k} \sim \text { Binomial }\left(n, \frac{\lambda}{\lambda+\mu}\right)
\end{aligned}
$$

\Rightarrow distribution of $(X(t) \mid X(t)+Y(t)=n)$ is

$$
\text { Binomial }\left(n, \frac{\lambda}{\lambda+\mu}\right) \text {. }
$$

(consistent with (a) where the next student tapes door 1 with "success rate" $\frac{\lambda}{\lambda f \mu}$).

The following is a sind of converse of the previous theorem.

