The Exponential Distribution

$$X \sim Exp(\lambda)$$
 if pdf is $f(x) = \begin{cases} \lambda e^{-\lambda x}, x \ge 0 \\ 0, x \ge 0 \end{cases}$
 $CDF F(x) = \begin{cases} 1 - e^{-\lambda x}, x \ge 0 \\ 0, x \ge 0 \end{cases}$
 $Remark:$ When studying the life true of an object (e.g. in
Physics -> decay) we often refer to the "exponential decay
rak". From a probabilistic point of view we can also
associate the exponential distribution as a measure of lifegran
with λ being the failure rate.

Suppose X is the lifespan of some object (e.g. phone battery)
Lpdf f, CDFF
Then
$$P(X \in (t, t+olt) | X > t) = \frac{P(X \in (t, t+dt))}{P(X > t)}$$

probability tool if die behaving to oud todat
grean that it has survived unket.
 $= \frac{\int_{t}^{t} f(x) dx}{1 - F(t)} \stackrel{dt \approx 0}{\approx} \frac{f(t) dt}{1 - F(t)} = r(t) dt,$
where $r(t) = \frac{f(t)}{1 - F(t)}$ is the failure (hazard) rate
function.
 $\rightarrow If X \sim Exp(X)$, then $r(t) = \frac{\lambda}{e^{-\lambda t}} = \lambda.$
 \rightarrow So the failure rate function is constant for the
exponential r.v. (i.e., it doesn't depend on time).

Remark: By the definition of the nomenony property. If a
r.v. is memory less, its failure rate is constant!
Prof:
$$P(X \in (t, t+dt) | X > t) = r(t) dt$$
 for dt small.
If
 $I = P(X \ge t+dt | X > t) = 1 - P(X \ge dt)$ does not
depend
neurony less out!
Remark: $r(t) = \frac{f(t)}{1 - F(t)} = \frac{F'(t)}{1 - F(t)}$ failure rate uniquely
 $=> b_n (1 - F(t)) = -\int_0^t r(t) du + C$
 $\Rightarrow I - F(t) = e^c e^c = > C = 0.$
 $\Rightarrow F(t) = 1 - exp^{-\int_0^t r(u) du}$
If r is constant, then $F(t) = 1 - e^{-t\lambda}$
 $r(s) = \lambda.$
 $\Rightarrow X$ is exponential distribution is the only real
memory less $r.V.$

The parameter λ is the rate of the distribution. Example: $X_{1,...,} X_{n}$ independent exponential r.v.'s write respective rates $\lambda_{1,...,} \lambda_{n}$, $\lambda_{i} \neq \lambda_{j}$. Suppose that a bin contains n different types of patteries with a type j bottory lasting $Exp(\lambda_{j})$ time.

Suppose further that
$$p_j$$
 is the proportion of type;
Datteries in the bin, $\sum_{j=1}^{n} p_j = 1$.
If a bottom is randomly chosen, what is the
distribution of the liftime of this bottom?
 $T \in S_{1,...,n}$ $P(T=j) = f_j$.
Battom liftime is the r.v. X_T "hyperceponential
random variable".
To obtain the distribution function of X_T :
 $1 - F(H) = \sum_{i=1}^{n} P(X_i > t | T=i) P(T=i)$
 $= \sum_{i=1}^{n} P_i e^{-\lambda_i t}$

To get
$$f(t)$$
:
 $f(t) = F'(t) = -(1 - F(t))' = \sum_{i=1}^{n} \lambda_i p_i e^{-\lambda_i t}.$

=> The failure rate function is

$$r(t) = \frac{f(t)}{1-F(t)} = \frac{\sum_{i=1}^{n} \lambda_i p_i e^{-\lambda_i t}}{\sum_{i=1}^{n} p_i e^{-\lambda_i t}}$$

Let $\lambda_1 < \lambda_2 < \dots < \lambda_n$. (oupute P(T=1|X>t) as $t \rightarrow \infty$.

$$P(T=A|X>t) = \frac{P(X>t|T=A)P(T=A)}{P(X>t)}$$

$$= \frac{P_{1}e^{-\lambda_{1}t}}{\sum_{i=1}^{n}P_{i}e^{-\lambda_{i}t}} = \frac{P_{1}e^{-\lambda_{i}t}}{P_{1}e^{-\lambda_{1}t}} + \sum_{i=2}^{n}P_{i}e^{-\lambda_{i}t}$$

$$= \frac{P_{1}}{P_{1} + \sum_{i=2}^{n} P_{i} e^{-(\lambda_{i} - \lambda_{i})t}} \xrightarrow{-r} \int as t \rightarrow \infty.$$

$$P(T=i| X > t) \rightarrow 0 as t \rightarrow \infty$$
for $i \ge 1$

$$for i \ge 1$$

$$\int P(T=i| X > t) \rightarrow 0 as t \rightarrow \infty$$

$$\int e^{-\lambda_{i}t} + \sum_{i=2}^{n} \lambda_{i} P_{i} e^{-\lambda_{i}t}$$

$$= \lim_{t \to \infty} \frac{\lambda_{i} P_{i} + \sum_{i=2}^{n} \lambda_{i} P_{i} e^{-\lambda_{i}t}}{P_{i} e^{-\lambda_{i}t} + \sum_{i=2}^{n} P_{i} e^{-\lambda_{i}t}} \xrightarrow{-r} \lambda_{i} as t \rightarrow \infty.$$

As the randomly chosen battery ages its failure
rate converges to the anallest
$$\lambda_i!$$

The longer the battery lasts, the more lindy it is
a battery type with the smallest failure rate.