The Exponential Distribution

$$
\begin{array}{rl}
X \sim \sum_{x p}(\lambda) \text { if pdf is } f(x) & = \begin{cases}\lambda e^{-\lambda x}, & x \geq 0 \\
0 & , x<0\end{cases} \\
C D F & F(x)= \begin{cases}1-e^{-\lambda x}, & x \geq 0 \\
0 & , x<0 .\end{cases}
\end{array}
$$

Remark: When studying the life tine of an object (egg. in Physics \rightarrow decay) we often refer to the "exponential decay rate". From a probabilistic point of view we can also associate the exponential distribution as a measure of efespan with λ being the failure rate.

Suppose X is the lifespan of some object (e.g. ploce battery)

$$
\tau_{p d f} f_{1} C D F F
$$

Then $P(X \in(t, t+d t) \mid X>t)=\frac{P(X \in(t, t+d t))}{P(X>t)}$

$$
=\frac{\int_{t}^{t+d t} f(x) d x}{1-F(t)} \approx \frac{f(t) d t}{1-F(t)}=r(t) d t
$$

where $r(t)=\frac{f(t)}{1-F(t)}$ is the failure (hazard) rate
\rightarrow If $X \sim \operatorname{Exp}(\lambda)$, then $r(t)=\frac{\lambda e^{-\lambda t}}{e^{-\lambda t}}=\lambda$.
\rightarrow So the failure rate function is constant for the exponential r.v. (ie., it doess't depend on time).
\rightarrow this is another version of the no memory property.

Remark: By the definition of the nomemong property, if a r.v. is memoryless, its failure rate is constant!

Proof: $P(X \in(t, t+d t) \mid X>t)=r(t) d t$ for $d t$ scuall.
11

$$
1-P(x \geqslant t+d t \mid x>t) \underset{\substack{\text { ieworgkess }}}{=1-P(x \geqslant d t)} \begin{gathered}
\text { does coot } \\
\text { depend } \\
\text { on } t \text { ! }
\end{gathered}
$$

Remark: $r(t)=\frac{f(t)}{1-F(t)}=\frac{F^{\prime}(t)}{1-F(t)} \quad$ Failure rate uniquely determines the distribution.

$$
\begin{aligned}
& \Rightarrow \quad \ln (1-F(t))=-\int_{0}^{t} r(t) d u+C \\
& \Rightarrow \quad 1-F(t)=e^{c} \cdot e^{-\int_{0}^{t} r(u) d u} \\
& F(0)=0 \Rightarrow 1=e^{c} e^{0} \Rightarrow C=0 . \\
& \Rightarrow \quad F(t)=1-\exp ^{-\int_{0}^{t} r(u) d u}
\end{aligned}
$$

If r is constant, then $F(t)=1-e^{-t \lambda}$ $r(s)=\lambda . \quad \Rightarrow X$ is exponential r.v.! Rus,
Decorem: The exponential distribution is the only real memory less r.V.

The parameter λ is the rate of the distribution.
Example: X_{1}, \ldots, X_{n} independent exponential r.v.'s with respective rates $\lambda_{1}, \ldots, \lambda_{n}, \lambda_{i} \neq \lambda_{j} \forall_{i \neq j}$.
Suppose that a bin contains n different types of batteries with a type j battery lasting $E_{x p}\left(\lambda_{j}\right)$ time.

Suppose furthor that ${ }_{n} p_{j}$ is the proportion of type j
Dattories in the bin, $\sum_{j=1}^{n} P_{j}=1$.
If a battery is randomly chosen, what is the distribution of the liffime of this battery?

$$
T \in\{1, \ldots, n\} \quad P(T=j)=P_{j} .
$$

Battery beffime is the r.v. X_{T} "hyperexponential, random variable".
To obtain the distribution function if of X_{T} :

$$
\begin{aligned}
\left.\begin{array}{l}
1-F(t)= \\
=P(X T
\end{array}\right) & =\sum_{i=1}^{n} P\left(X_{i}>t \mid F=i\right) P(F i) \\
& =\sum_{i=1}^{n} p_{i} e^{-\lambda_{i} t}
\end{aligned}
$$

To get $f(t)$:

$$
\begin{aligned}
& \text { lo get } f(t) \text { : } \\
& f(t)=F^{\prime}(t)=-(1-F(t))^{\prime}=\sum_{i=1}^{n} \lambda_{i} p_{i} e^{-\lambda_{i} t}
\end{aligned}
$$

\Rightarrow The failure rate function is

$$
r(t)=\frac{f(t)}{1-f(t)}=\frac{\sum_{i=1}^{n} \lambda_{i} p_{i} e^{-\lambda_{i} t}}{\sum_{i=1}^{n} p_{i} e^{-\lambda_{i} t}}
$$

Let $\lambda_{1}<\lambda_{2}<\cdots<\lambda_{n}$.
Compute $P(T=1 \mid x>t)$ as $t \rightarrow \infty$.

$$
\begin{aligned}
& P(T=1 \mid x>t)=\frac{P(x>t \mid T=1) P(T=1)}{P(x>t)} \\
& =\frac{p_{1} e^{-\lambda_{1} t}}{\sum_{i=1}^{n} p_{i} e^{-\lambda_{i} t}}=\frac{p_{1} e^{-\lambda_{1} t}}{p_{1} e^{-\lambda_{1} t}+\sum_{i=2}^{n} p_{i} e^{-\lambda_{i} t}} \\
& =\frac{p_{1}}{p_{1}+\sum_{i=2}^{n} p_{i} e^{-\left(\lambda_{i}-\lambda_{1}\right) t}} \rightarrow 1 \text { as } t \rightarrow \infty . \\
& \lim _{t \rightarrow \infty} r(t)=\lim _{t \rightarrow \infty} \frac{\lambda_{1} p_{1} e^{-\lambda_{1} t}+\sum_{i=2}^{n} \lambda_{i} p_{i} e^{-\lambda_{i} t}}{p_{1} e^{-\lambda_{1} t}+\sum_{i=2}^{n} p_{i} e^{-\lambda_{i} t}} \\
& =\lim _{t \rightarrow \infty} \frac{\lambda_{1} p_{1}+\sum_{i=2}^{n} \lambda_{i} p_{i} e^{-\left(\lambda_{i}-\lambda_{1}\right) t}}{p_{1}+\sum_{i=2}^{n} p_{i} e^{-\left(\lambda_{i}-\lambda_{1}\right) t} \rightarrow \lambda_{1} \text { as } t \rightarrow \infty .}
\end{aligned}
$$

As the randomly chosen battery ages its failure rate converges to the smallest λ_{i} !
The longer the battery lasts, the ware livoly it is a battery type with the smallest failure rate.

