Chapter 5. The exponential Distribution and the Poisson process.
After studying processes in discrete time, we now focus on modeling and studying processes in continuous time.

Example: - Waiting live

$$
\longrightarrow \underset{\text { arrival of }}{\longrightarrow} \longrightarrow \text { iㅕㅊ촛 } \prod_{\text {counter }} \frac{g}{\}}
$$

arrival of usstwer is at ruudau time
\rightarrow How to model and study the length of the line at time t ? or the waiting time of a customer?
\rightarrow We can see this example as a counting process. (counting \# of customers at time t)
4 Applications in many domains: communication, pleysies, neuroscience, etc, etc.
Before studying this type of process, we will first review the exponential distribution, which is intimately connected with the processes of this chapter.
5.2. The Exponential Distribution:

A continuous r.v. X has the exponential distribution with parametor $\lambda, \lambda>0$ if its $p d f$ is

$$
f(x)= \begin{cases}\lambda e^{-\lambda x}, & x \geq 0 \\ 0, & x<0\end{cases}
$$

CD:

$$
F(x)=\int_{-\infty}^{x} f(y) d y= \begin{cases}1-e^{-\lambda x}, & x \geq 0 \\ 0, & x<0\end{cases}
$$

Mean: $\mathbb{E}[x]=\int_{-\infty}^{\infty} x f(x) d x=\int_{0}^{\infty} \lambda x e^{-\lambda x} d x$
integrating by parts:

$$
\begin{aligned}
& \text { integratug by parts: } \\
& \left.u=x, d v=\lambda e^{-\lambda x} d x \quad=-x e^{-\lambda x}\right]_{0}^{\infty}+\int_{0}^{\infty} e^{-\lambda x} d x
\end{aligned}
$$

$$
d u=1, v=-e^{-\lambda x}
$$

$$
\left.=0+\left(-\frac{1}{\lambda} e^{-\lambda x}\right)\right]_{0}^{\infty}=\frac{1}{\lambda}
$$

Moments:

$$
\begin{aligned}
& \text { uts: } \mathbb{E}[x]=\left.\frac{d}{d t} \Phi(t)\right|_{t=0}=\left.\frac{\lambda}{\left(\lambda-t^{2}\right.}\right|_{t=0} \Phi^{(k)}(0)=\mathbb{E}\left[x^{k}\right] \\
& \mathbb{E}\left[X^{2}\right]=\left.\frac{d^{2}}{d t^{2}} \Phi(t)\right|_{t=0}=\left.\frac{2 \lambda}{\lambda-t)^{3}}\right|_{t=0}=\frac{2}{\lambda^{2}} \quad \begin{array}{ll}
\frac{\lambda}{\lambda-t}, & t<\lambda \\
\infty, & t \geq \lambda
\end{array} \\
& \Rightarrow \operatorname{Var}(X)=\mathbb{E}\left[x^{2}\right]-\mathbb{E}[X]^{2}=\frac{2}{\lambda^{2}}-\frac{1}{\lambda^{2}}=\frac{1}{\lambda^{2}} .
\end{aligned}
$$

Properties: weworyless $P(x>s+t \mid x>t)=P(x>s) \quad \forall s, t \geq 0$.
probability of survival for/stt years given survival for t years is
probability of survival for s years.
Equivalutly, $P(x>s+t, \quad x>t)=P(x>s) P(x>t)$.
Example: Suppose the service time for a customer at a pause follows Exp (λ).

$$
\frac{i j i}{\text { customer }}
$$

Suppose customer 2 has now waited for t minutes. What is the probability They'll wait for another s mimutos?

$$
P(x>s+t \mid x>t)=\frac{e^{-\lambda(s t t)}}{e^{-\lambda t}}=e^{-\lambda s}=P(x>s)
$$

Graphical interpretation:

Example: Consider a post office with two clerks. The amount of time a clerk spends withe a mstower is \sim Exp (λ).
Cameron enters the o post office and there are already two mestomers Alice and Bob being helped by Clerk 1 and Clerk 2.
What is the probability that of the 3 customers Cameron is the last to leave the office?

Solution: Suppose Cameron finds a free clerk at tine t. At this pone either Alice or Bob world have just left the office. By the memoryless property, the amount of time that whoever remains will still be Exp (λ)
\Rightarrow it is the same as 7 they were just starting to be helped. \Rightarrow by symmetry prob (Cameron loaves last) $=\frac{1}{2}$.

Example:

1. What are the different ${ }^{\text {Lommmincating }}$ lasses and what types are they?
2. Consider the closed class $\{4,2,3\}$. Write down the transition matrix, and compute $P\left(X_{3}=i \mid X_{0}=1\right)$, for $i=1,23$.
3. What is $\lim _{n \rightarrow \infty} p_{23}^{(n)}$?

4 (1) la at is the mean \#\# of steps to revisit 3?

1. $\{1,2,3\}$ positive recurrent
$\{0,4,5,6, \ldots\}$ transient $\quad P\left(\right.$ return to $\left.4 \mid x_{0}=4\right) \leqslant \frac{1}{2}<1$.
2. $P=\begin{aligned} & 1 \\ & 2 \\ & 3\end{aligned}\left(\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 0^{3} \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 1 & 0 & 0\end{array}\right)$.

$$
\begin{aligned}
& p^{2}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 1 / 2 & 1 / 2 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 1 / 2 & 1 / 2 \\
1 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & 1 / 2 & 1 / 2 \\
1 / 2 & 1 / 4 & 1 / 4 \\
0 & 1 & 0
\end{array}\right) \\
& p^{3}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 / 21 / 2 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
0 & 1 / 2 & 1 / 2 \\
1 / 2 & 1 / 4 & 1 / 4 \\
0 & 1 & 0
\end{array}\right)=\left(\begin{array}{ccc}
1 / 2 & 1 / 4 \\
1 / 4 & 5 / 8 & 8 / 8 \\
0 & 1 / 2 & 1 / 2
\end{array}\right) .
\end{aligned}
$$

3. Not reversible.

$$
\begin{aligned}
\pi_{1} \pi_{2}, \pi_{3}\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 1 / 2 & 1 / 2 \\
1 & 0 & 0
\end{array}\right)= & \left(\pi_{3}, \pi_{1}+\frac{1}{2} \pi_{2}, \frac{1}{2} \pi_{2}\right)=\left(\pi_{1}, \pi_{2}, \pi_{3}\right) \\
& \pi_{1}=\pi_{3}=\frac{1}{2} \pi_{2} \quad \frac{5}{2} \pi_{2}=1 \\
& \pi_{2}=\frac{2}{5}, \pi_{1}=\pi_{3}=\frac{1}{5} . \\
\Rightarrow & \lim _{n \rightarrow \infty} p_{23}^{(n)}=\pi_{3}=\frac{1}{5}
\end{aligned}
$$

4. Mean \# of steps to revisit 3 is 5 .
